BackgroundGrowing evidence has shown that alterations in gut microbiota composition are associated with multiple autoimmune diseases (ADs). However, it is unclear whether these associations reflect a causal relationship.ObjectiveTo reveal the causal association between gut microbiota and AD, we conducted a two-sample Mendelian randomization (MR) analysis.Materials and MethodsWe assessed genome-wide association study (GWAS) summary statistics for gut microbiota and six common ADs, namely, systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type 1 diabetes (T1D), and celiac disease (CeD), from published GWASs. Two-sample MR analyses were first performed to identify causal bacterial taxa for ADs in discovery samples. Significant bacterial taxa were further replicated in independent replication outcome samples. A series of sensitivity analyses was performed to validate the robustness of the results. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation.ResultsCombining the results from the discovery and replication stages, we identified one causal bacterial genus, Bifidobacterium. A higher relative abundance of the Bifidobacterium genus was associated with a higher risk of T1D [odds ratio (OR): 1.605; 95% CI, 1.339–1.922; PFDR = 4.19 × 10−7] and CeD (OR: 1.401; 95% CI, 1.139–1.722; PFDR = 2.03 × 10−3), respectively. Further sensitivity analyses validated the robustness of the above associations. The results of reverse MR analysis showed no evidence of reverse causality from T1D and CeD to the Bifidobacterium genus.ConclusionThis study implied a causal relationship between the Bifidobacterium genus and T1D and CeD, thus providing novel insights into the gut microbiota-mediated development mechanism of ADs.
Appendicular lean mass (ALM) is a heritable trait associated with loss of lean muscle mass and strength, or sarcopenia, but its genetic determinants are largely unknown. Here we conducted a genome-wide association study (GWAS) with 450,243 UK Biobank participants to uncover its genetic architecture. A total of 1059 conditionally independent variants from 799 loci were identified at the genome-wide significance level (p < 5 × 10−9), all of which were also significant at p < 5 × 10–5 in both sexes. These variants explained ~15.5% of the phenotypic variance, accounting for more than one quarter of the total ~50% GWAS-attributable heritability. There was no difference in genetic effect between sexes or among different age strata. Heritability was enriched in certain functional categories, such as conserved and coding regions, and in tissues related to the musculoskeletal system. Polygenic risk score prediction well distinguished participants with high and low ALM. The findings are important not only for lean mass but also for other complex diseases, such as type 2 diabetes, as ALM is shown to be a protective factor for type 2 diabetes.
Evidence supports the observational associations of gut microbiota with a variety of psychiatric disorders, but the causal nature of such associations remains obscure. Aiming to comprehensively investigate their causal relationship and to identify specific causal microbe taxa for psychiatric diseases, we conducted a two-sample Mendelian randomization (MR) analysis of gut microbiome with 15 psychiatric diseases. Specifically, the microbiome genome-wide association study (GWAS) in 18,473 individuals from the MiBioGen study was used as exposure sample, and the GWAS for 15 psychiatric diseases was used as outcome samples. One-hundred ninety bacterial taxa from six levels were available for analysis. At a multiple-testing corrected significance level (phylum P < 5.56 × 10–3, class P < 3.33 × 10–3, order P < 2.63 × 10–3, family P < 1.67 × 10–3, genus P < 4.90 × 10–4, and species P < 3.33 × 10–3), the following eight causal associations from seven bacterial features (one phylum + three classes + one order + one family + one species) were identified: family Prevotellaceae with autism spectrum disorder (P = 5.31 × 10–4), class Betaproteobacteria with bipolar disorder (P = 1.53 × 10–3), class Actinobacteria with schizophrenia (P = 1.33 × 10–3), class Bacteroidia and order Bacteroidales with Tourette syndrome (P = 2.51 × 10–3 and 2.51 × 10–3), phylum Actinobacteria and class Actinobacteria with extroversion (P = 8.22 × 10–4 and 1.09 × 10–3), and species Clostridium innocuum with neuroticism (P = 8.92 × 10–4). Sensitivity analysis showed no evidence of reverse causality, pleiotropy, and heterogeneity. Our findings offered novel insights into the gut microbiota–mediated development mechanism of psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.