Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.
Lung cancer is the most frequent cause of cancer-related death in this country for men and women. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21–25 nt long) capable of targeting genes for either degradation of mRNA or inhibition of translation. We identified aberrant expression of 41 miRNAs in lung tumor versus uninvolved tissue. MiR-133B had the lowest expression of miRNA in lung tumor tissue (28 fold reduction) compared to adjacent uninvolved tissue. We identified two members of the BCL-2 family of pro-survival molecules (MCL-1 and BCL2L2 (BCLw)) as predicted targets of miR-133B. Selective over-expression of miR-133B in adenocarcinoma (H2009) cell lines resulted in reduced expression of both MCL-1 and BCL2L2. We then confirmed that miR-133B directly targets the 3’UTRs of both MCL-1 and BCL2L2. Lastly, over-expression of miR-133B induced apoptosis following gemcitabine exposure in these tumor cells. To our knowledge, this represents the first observation of decreased expression of miR-133B in lung cancer and that it functionally targets members of the BCL-2 family.
Glioblastoma (GBM) is the most common and aggressive histologic subtype of brain cancer with poor outcomes and limited treatment options. Here we report the selective overexpression of the protein arginine methyltransferase PRMT5 as a novel candidate theranostic target in this disease. PRMT5 silences the transcription of regulatory genes by catalyzing symmetric di-methylation of arginine residues on histone tails. PRMT5 overexpression in patient-derived primary tumors and cell lines correlated with cell line growth rate and inversely with overall patient survival. Genetic attenuation of PRMT5 led to cell cycle arrest, apoptosis and loss of cell migratory activity. Cell death was p53-independent but caspase-dependent and enhanced with temozolomide, a chemotherapeutic agent used as a present standard of care. Global gene profiling and chromatin immunoprecipitation identified the tumor suppressor ST7 as a key gene silenced by PRMT5. Diminished ST7 expression was associated with reduced patient survival. PRMT5 attenuation limited PRMT5 recruitment to the ST7 promoter, led to restored expression of ST7 and cell growth inhibition. Lastly, PRMT5 attenuation enhanced GBM cell survival in a mouse xenograft model of aggressive GBM. Together, our findings defined PRMT5 as a candidate prognostic factor and therapeutic target in GBM, offering a preclinical justification for targeting PRMT5-driven oncogenic pathways in this deadly disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.