Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.
Abstract:Recently lead halide nanocrystals (quantum dots) have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) have been studied across a broad temperature range from 80K to 380K. Twophoton absorption has been investigated with absorption coefficient up to 0.085 cm/GW at room temperature. Moreover, the photoluminescence excited by two-photon absorption shows a linear blue-shift (0.25meV/K) below temperature of ~220K and turned steady with fluctuation below 1nm (4.4meV) for higher temperature up to 380K. These phenomena are distinctly different from general red-shift of semiconductor and can be explained by the competition between lattice expansion and electron−phonon coupling. Our results reveal the strong nonlinear absorption and temperatureindependent chromaticity in a large temperature range from 220K to 380K in the CsPbX3 QDs, which will offer new opportunities in nonlinear photonics, light-harvesting and light-emitting devices.
Recently, the biomass "bottom-up" approach for the synthesis of graphene quantum dots (GQDs) has attracted broad interest because of the outstanding features, including low-cost, rapid, and environmentally friendly nature. However, the low crystalline quality of products, substitutional doping with heteroatoms in lattice, and ambiguous reaction mechanism strongly challenge the further development of this technique. Herein, we proposed a facile and effective strategy to prepare controllable sulfur (S) doping in GQDs, occurring in a lattice substitution manner, by hydrothermal treatment of durian with platinum catalyst. S atoms in GQDs are demonstrated to exist in the thiophene structure, resulting in good optical and chemical stabilities, as well as ultrahigh quantum yield. Detailed mechanism of the hydrothermal reaction progress was investigated. High-efficiency reforming cyclization provided by platinum was evidenced by the coexistence of diversified sp-fused heterocyclic compounds and thiophene derivatives. Moreover, we also demonstrated that saccharides in durian with small molecular weight (<1000 Da) is the main carbon source for the forming GQDs. Because of the desulfurizing process, controllable photoluminescence properties could be achieved in the as-prepared GQDs via tuning doping concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.