Heterogeneous catalysts play a pivotal role in the chemical industry. The strong metalsupport interaction (SMSI), which affects the catalytic activity, is a phenomenon researched for decades. However, detailed mechanistic understanding on real catalytic systems is lacking. Here, this surface phenomenon was studied on an actual platinum-titania catalyst by state-of-the-art in situ electron microscopy, in situ X-ray photoemission spectroscopy and in situ X-ray diffraction, aided by density functional theory calculations, providing a novel real time view on how the phenomenon occurs. The migration of reduced titanium oxide, limited in thickness, and the formation of an alloy are competing mechanisms during high temperature reduction. Subsequent exposure to oxygen segregates the titanium from the alloy, and a thicker titania overlayer forms. This role of oxygen in the formation process and stabilization of the overlayer was not recognized before. It provides new application potential in catalysis and materials science.
Immediate hemorrhage control and infection prevention are pivotal for saving lives in critical situations such as battlefields, natural disasters, traffic accidents, and so on. In situ hydrogels are promising candidates, but their mechanical strength is often not strong enough for use in critical situations. In this study, we constructed three hydrogels with different amounts of Schiff-base moieties from 4-arm-PEG-NH2, 4-arm-PEG-NHS, and 4-arm-PEG-CHO in which vancomycin was incorporated as an antimicrobial agent. The hydrogels possess porous structures, excellent mechanical strength, and high swelling ratio. The cytotoxicity studies indicated that the composite hydrogel systems possess good biocompatibility. The Schiff bases incorporated improve the adhesiveness and endow the hydrogels with bacteria-sensitivity. The in vivo hemostatic and antimicrobial experiments on rabbits and pigs demonstrated that the hydrogels are able to aid in rapid hemorrhage control and infection prevention. In summary, vancomycin-loaded hydrogels may be excellent candidates as hemostatic and antibacterial materials for first aid treatment of the wounded in critical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.