A singlemode-multimode-singlemode (SMS) fiber structure consists of a short section of multimode fiber fusionspliced between two SMS fibers. The mechanism underpinning the operation of an SMS fiber structure is multimode interference and associated self-imaging. SMS structures can be used in a variety of optical fiber systems but are most commonly used as sensors for a variety of parameters, ranging from macro-world measurands such as temperature, strain, vibration, flow rate, RI and humidity to the micro-world with measurands such as proteins, pathogens, DNA, and specific molecules. While traditional SMS structures employ a short section of standard multimode fiber, a large number of structures have been investigated and demonstrated over the last decade involving the replacement of the multimode fiber section with alternatives such as a hollow core fiber or a tapered fiber. The objective of replacing the multimode fiber has most often been to allow sensing of different measurands or to improve sensitivity. In this paper, several different categories of SMS fiber structures, including traditional SMS, modified SMS and tapered SMS fiber structures are discussed with some theoretical underpinning and reviews of a wide variety of sensing examples and recent advances. The paper then summarizes and compares the performances of a variety of sensors which have been published under a number of headings. The paper concludes by considering the challenges faced by SMS based sensing schemes in terms of their deployment in real world applications and discusses possible future developments of SMS fiber sensors.
An ultra-high sensitivity label-free optical fiber biosensor for inactivated Staphylococcus aureus (S. aureus) detection is proposed and investigated in this study, with additional advantages of robust and stability compared to traditional tapered fiber structure. The proposed fiber biosensor is based on a tapered singlemode-no coresinglemode fiber coupler (SNSFC) structure, where the no core fiber was tapered to small diameter (taper-waist diameter of about 10 µm ) and functionalized with the pig immunoglobulin G (IgG) antibody for detection of S. aureus. The measured maximum wavelength shift of the sensor for an S. aureus concentration of 7×10 1 CFU/ml (colony forming unit per milliliter) is 2.04 nm, which is equivalent to a limit of detection (LOD) of 3.1 CFU/ml (a highest LOD reported so far for optical fiber biosensors), considering the maximum wavelength variation of the sensor in phosphate buffered saline (PBS) is ±0.03 nm over 40 minutes, where 3 times of maximum wavelength variation (3×0.03=0.09 nm) is defined as measurement limit. The response time of the developed fiber sensor is less than 30 minutes. The ultra-sensitive biosensor has potential to be widely applied to various areas such as disease, medical diagnostics and food safety inspection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.