In the last few years, long-pulse H-mode plasma discharges (with small edge-localized modes and normalized beta, β N ~ 1) have been realized at the Experimental Advanced Superconducting Tokamak (EAST). This paper reports on high-β N (>1.5) discharges in the 2015 EAST campaign. The characteristics of these H-mode plasmas have been presented in a database. Analysis of the experimental limit of β N has revealed several main features of typical discharges. Firstly, efficient, stable high heating power is required. Secondly, control of impurity radiation (partly due to interaction between the plasma and the in-vessel components) is also a critical issue for the maintenance of high-β N discharges. In addition an internal transport barrier (ITB) has recently been observed in EAST, introducing further improvement in confinement surpassing H-mode plasmas. ITB dynamics is another key issue for high-β N plasmas in EAST. Each of these features is discussed in this paper. Study and improvement of these issues could be considered as the key to achieving long-pulse high-β N operation with EAST.
By installing an X-mode polarized Q-band (32-56 GHz) reflectometry at the low field side on EAST, the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas. A Monte Carlo procedure has been developed to analyze the density profiles by considering the error of time delay measured by reflectometry. By combining this Q-band and previously developed V-and W-band reflectometries, the density profiles from edge to core can be measured in most EAST experiments. The line integrated densities deduced from density profiles measured by reflectometry are consistent with those directly measured by a horizontal interferometer. The density pedestal measured by reflectometry shows a clear crash during an ELM (edge localized mode) event, after which the pedestal gradually increases and recovers in 10 ms and then remains little changed up to the next ELM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.