The redevelopment/regeneration pattern of amputated limbs from a blastema in salamander suggests that enhanced regeneration might be achieved by mimicking the developmental microenvironment. Inspired by the discovery that the expression of magnesium transporter‐1 (MagT1), a selective magnesium (Mg) transporter, is significantly upregulated in the endochondral ossification region of mouse embryos, a Mg‐enriched 3D culture system is proposed to provide an embryonic‐like environment for stem cells. First, the optimum concentration of Mg ions (Mg 2+ ) for creating the osteogenic microenvironment is screened by evaluating MagT1 expression levels, which correspond to the osteogenic differentiation capacity of stem cells. The results reveal that Mg 2+ selectively activates the mitogen‐activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway to stimulate osteogenic differentiation, and Mg 2+ influx via MagT1 is profoundly involved in this process. Then, Mg‐enriched microspheres are fabricated at the appropriate size to ensure the viability of the encapsulated cells. A series of experiments show that the Mg‐enriched microenvironment not only stimulates the osteogenic differentiation of stem cells but also promotes neovascularization. Obvious vascularized bone regeneration is achieved in vivo using these Mg‐enriched cell delivery vehicles. The findings suggest that biomaterials mimicking the developmental microenvironment might be promising tools to enhance tissue regeneration.
BackgroundTo cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure.ResultsIn this study we fabricated a collagen/poly(ε-caprolactone) (collagen/PCL) fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate.ConclusionsAll the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it is believed that this electrospun nerve conduit could find more application in cell therapy for nerve regeneration in future, to further improve functional regeneration outcome especially for longer nerve defect restoration.
affect the quality of life of patients. [2] Unlike the external cutaneous membrane, the lining of the oral cavity has a wet and highly dynamic environment, [3] with endogenous saliva and exogenous food and drink continuously bathing the oral mucosa. In addition, chewing, speech, swallowing, and even changes in facial expressions cause movement of the tongue and oral mucosa. These complex challenges typically render local treatment strategies for protective materials and therapeutic drugs ineffective, owing to their short retention on the mucosal surface. [4] Topical agents such as solutions, powders, ointments, polymer films, and hydrogels (e.g., Gengigel) commonly used in clinical settings are diluted or washed away by saliva within 1 h. This is far shorter than the optimal repair time for treating oral mucosal disorders, which require 12-24 h to heal. [4] In addition to meet the fundamental requirements of safety and usability, the ideal oral mucosal repair material should be thin, elastic, and have excellent wet-tissue adhesion to resist The wet and highly dynamic environment of the mouth makes local treatment of oral mucosal diseases challenging. To overcome this, a photo-crosslinking hydrogel adhesive is developed inspired by the success of light-curing techniques in dentistry. The adhesive operates on a fast (within 5 s) phototriggered S-nitrosylation coupling reaction and employs imine anchoring to connect to host tissues. Unlike other often-used clinical agents that adhere weakly and for short durations, this thin, elastic, adhesive, and degradable cyclic o-nitrobenzyl-modified hyaluronic acid gel protects mucosal wounds from disturbance by liquid rinsing, oral movement, and friction for more than 24 h. The results from both rat and pig oral mucosa repair models demonstrate that this new gel adhesive creates a favorable microenvironment for tissue repair and can shorten tissue healing time. This study thus illustrates a therapeutic strategy with the potential to advance the treatment of oral mucosal defects in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.