Stroke is one of the leading causes of death and disability in the world. Oxidative stress, which refers to an excessive generation of reactive oxygen species (ROS), plays a key role in the pathological process of stroke. Excessive ROS production contributes to brain ischemia/reperfusion injury through many mechanisms including BBB disruption, inflammation, apoptosis, and cellular necrosis. Nuclear factor-E2-related factor 2 (Nrf2) is one of the critical regulators of endogenous antioxidant defense, which promote the transcription of a wide variety of antioxidant genes. Emerging evidence has demonstrated that activation of Nrf2 and its target genes may protect the brain against ischemia/reperfusion injury, and therapies aimed at increasing Nrf2 activity appear to be beneficial to alleviate brain injury in stroke through the suppression of oxidative stress. The main purpose of this review is to discuss the current evidence for the role of Nrf2 in stroke and the potential interventions to enhance Nrf2 activation to attenuate stroke-induced injury.
Background and Purpose-Early hematoma growth is not uncommon in patients with intracerebral hemorrhage and is an independent predictor of poor functional outcome. The purpose of our study was to report and validate the use of our newly identified computed tomographic (CT) blend sign in predicting early hematoma growth. Methods-Patients with intracerebral hemorrhage who underwent baseline CT scan within 6 hours after onset of symptoms were included. The follow-up CT scan was performed within 24 hours after the baseline CT scan. Significant hematoma growth was defined as an increase in hematoma volume of >33% or an absolute increase of hematoma volume of >12.5 mL. The blend sign on admission nonenhanced CT was defined as blending of hypoattenuating area and hyperattenuating region with a well-defined margin. Univariate and multivariable logistic regression analyses were performed to assess the relationship between the presence of the blend sign on nonenhanced admission CT and early hematoma growth. Results-A total of 172 patients were included in our study. Blend sign was observed in 29 of 172 (16.9%) patients with intracerebral hemorrhage on baseline nonenhanced CT scan. Of the 61 patients with hematoma growth, 24 (39.3%) had blend sign on admission CT scan. Interobserver agreement for identifying blend sign was excellent between the 2 readers (κ=0.957). The multivariate logistic regression analysis demonstrated that the time to baseline CT scan, initial hematoma volume, and presence of blend sign on baseline CT scan to be independent predictors of early hematoma growth. The sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.3%, 95.5%, 82.7%, and 74.1%, respectively. Conclusions-The CT blend sign could be easily identified on regular nonenhanced CT and is highly specific for predicting hematoma growth.
In response to stroke, astrocytes become reactive astrogliosis and are a major component of a glial scar. This results in the formation of both a physical and chemical (production of chondroitin sulfate proteoglycans) barrier, which prevent neurite regeneration that, in turn, interferes with functional recovery. However, the mechanisms of reactive astrogliosis and glial scar formation are poorly understood. In this work, we hypothesized that repulsive guidance molecule a (RGMa) regulate reactive astrogliosis and glial scar formation. We first found that RGMa was strongly expressed by reactive astrocytes in the glial scar in a rat model of middle cerebral artery occlusion/reperfusion. Genetic or pharmacologic inhibition of RGMa in vivo resulted in a strong reduction of reactive astrogliosis and glial scarring as well as in a pronounced improvement in functional recovery. Furthermore, we showed that transforming growth factor β1 (TGFβ1) stimulated RGMa expression through TGFβ1 receptor activin-like kinase 5 (ALK5) in primary cultured astrocytes. Knockdown of RGMa abrogated key steps of reactive astrogliosis and glial scar formation induced by TGFβ1, including cellular hypertrophy, glial fibrillary acidic protein upregulation, cell migration, and CSPGs secretion. Finally, we demonstrated that RGMa co-immunoprecipitated with ALK5 and Smad2/3. TGFβ1-induced ALK5-Smad2/3 interaction and subsequent phosphorylation of Smad2/3 were impaired by RGMa knockdown. Taken together, we identified that after stroke, RGMa promotes reactive astrogliosis and glial scar formation by forming a complex with ALK5 and Smad2/3 to promote ALK5-Smad2/3 interaction to facilitate TGFβ1/Smad2/3 signaling, thereby inhibiting neurological functional recovery. RGMa may be a new therapeutic target for stroke.
S pontaneous intracerebral hemorrhage (ICH) accounts for 10% to 15% of all strokes and is one of the leading causes of stroke-related mortality and morbidity worldwide. Patients with ICH are generally at risk of developing stroke-associated pneumonia (SAP) during acute hospitalization. Evidence has shown that SAP not only increases the length of hospital stay (LOS) and medical cost 1,2 but also is an important risk factor of mortality and morbidity after acute stroke. 3,4 Several risk factors for SAP have been identified, such as older age, 4-12 male sex, 5,6,10,11,13 current smoking, 12 diabetes mellitus, 6 hypertension, 14 atrial fibrillation, 7,10,12 congestive heart failure, 7,12,13,15 chronic obstructive pulmonary disease, 8,[12][13][14] preexisting dependency, 8,12,13,16 stroke severity, 5,6,8,12,17,18 dysphagia, [8][9][10][11][12]14,[18][19][20] and blood glucose. 12 Meanwhile, based on these risk factors, a few risk models have been developed for SAP after acute ischemic stroke. [8][9][10][11][12] Currently, no valid scoring system is available for predicting SAP after ICH in routine clinical practice or clinical trial. We hypothesized that there might be some common grounds for the development of pneumonia after acute ischemic stroke and ICH, and those predictors for SAP after acute ischemic stroke might also be useful for predicting SAP after ICH. For clinical practice, an effective risk-stratification and prognostic model for SAP after ICH would be helpful to identify vulnerable patients, allocate relevant medical resources, and implement tailored preventive strategies. In addition, for clinical trial, it could be used in nonrandomized studies to control for case-mix variation and in controlled studies as a selection criterion.Background and Purpose-We aimed to develop a risk score (intracerebral hemorrhage-associated pneumonia score, ICH-APS) for predicting hospital-acquired stroke-associated pneumonia (SAP) after ICH. Methods-The ICH-APS was developed based on the China National Stroke Registry (CNSR), in which eligible patients were randomly divided into derivation (60%) and validation (40%) cohorts. Variables routinely collected at presentation were used for predicting SAP after ICH. For testing the added value of hematoma volume measure, we separately developed 2 models with (ICH-APS-B) and without (ICH-APS-A) hematoma volume included. Multivariable logistic regression was performed to identify independent predictors. The area under the receiver operating characteristic curve (AUROC), Hosmer-Lemeshow goodness-of-fit test, and integrated discrimination index were used to assess model discrimination, calibration, and reclassification, respectively. Results-The SAP was 16.4% and 17.7% in the overall derivation (n=2998) and validation (n=2000) cohorts, respectively.A 23-point ICH-APS-A was developed based on a set of predictors and showed good discrimination in the overall derivation (AUROC, 0.75; 95% confidence interval, 0. Ji et al Risk Score to Predict SAP After ICH 2621In the study, we aimed to ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.