BACKGROUND Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis. METHODS We evaluated 161 Han Chinese persons with sporadic congenital scoliosis, 166 Han Chinese controls, and 2 pedigrees, family members of which had a 16p11.2 deletion, using comparative genomic hybridization, quantitative polymerase-chain-reaction analysis, and DNA sequencing. We carried out tests of replication using an additional series of 76 Han Chinese persons with congenital scoliosis and a multi-center series of 42 persons with 16p11.2 deletions. RESULTS We identified a total of 17 heterozygous TBX6 null mutations in the 161 persons with sporadic congenital scoliosis (11%); we did not observe any null mutations in TBX6 in 166 controls (P<3.8×10−6). These null alleles include copy-number variants (12 instances of a 16p11.2 deletion affecting TBX6) and single-nucleotide variants (1 nonsense and 4 frame-shift mutations). However, the discordant intrafamilial phenotypes of 16p11.2 deletion carriers suggest that heterozygous TBX6 null mutation is insufficient to cause congenital scoliosis. We went on to identify a common TBX6 haplotype as the second risk allele in all 17 carriers of TBX6 null mutations (P<1.1×10−6). Replication studies involving additional persons with congenital scoliosis who carried a deletion affecting TBX6 confirmed this compound inheritance model. In vitro functional assays suggested that the risk haplotype is a hypomorphic allele. Hemivertebrae are characteristic of TBX6-associated congenital scoliosis. CONCLUSIONS Compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 accounted for up to 11% of congenital scoliosis cases in the series that we analyzed.
Ankylosing spondylitis (AS), a common type of spondyloarthropathy, is a chronic inflammatory autoimmune disease that mainly affects spine joints, causing severe, chronic pain; additionally, in more advanced cases, it can cause spine fusion. Significant progress in its pathophysiology and treatment has been achieved in the last decade. Immune cells and innate cytokines have been suggested to be crucial in the pathogenesis of AS, especially human leukocyte antigen (HLA)‑B27 and the interleukin‑23/17 axis. However, the pathogenesis of AS remains unclear. The current study reviewed the etiology and pathogenesis of AS, including genome-wide association studies and cytokine pathways. This study also summarized the current pharmaceutical and surgical treatment with a discussion of future potential therapies.
Despite advances in the development of silk fibroin (SF)-based hydrogels, current methods for SF gelation show significant limitations such as lack of reversible crosslinking, use of nonphysiological conditions, and difficulties in controlling gelation time. In the present study, a strategy based on dynamic metal-ligand coordination chemistry is developed to assemble SF-based hydrogel under physiological conditions between SF microfibers (mSF) and a polysaccharide binder. The presented SF-based hydrogel exhibits shearthinning and autonomous self-healing properties, thereby enabling the filling of irregularly shaped tissue defects without gel fragmentation. A biomineralization approach is used to generate calcium phosphate-coated mSF, which is chelated by bisphosphonate ligands of the binder to form reversible crosslinkages. Robust dually crosslinked (DC) hydrogel is obtained through photopolymerization of acrylamide groups of the binder. DC SF-based hydrogel supports stem cell proliferation in vitro and accelerates bone regeneration in cranial critical size defects without any additional morphogenes delivered. The developed self-healing and photopolymerizable SF-based hydrogel possesses significant potential for bone regeneration application with the advantages of injectability and fit-to-shape molding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.