Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting the causative SS18-SSX fusion oncoprotein are currently available. Histone deacetylase (HDAC) inhibition has been shown in previous studies to disrupt the synovial sarcoma oncoprotein complex, resulting in apoptosis. To understand the molecular effects of HDAC inhibition, RNA-seq transcriptome analysis was undertaken in six human synovial sarcoma cell lines. HDAC inhibition induced pathways of cell-cycle arrest, neuronal differentiation, and response to oxygen-containing species, effects also observed in other cancers treated with this class of drugs. More specific to synovial sarcoma, polycomb group targets were reactivated, including tumor suppressor , and proapoptotic transcriptional patterns were induced. Functional analyses revealed that ROS-mediated FOXO activation and proapoptotic factors BIK, BIM, and BMF were important to apoptosis induction following HDAC inhibition in synovial sarcoma. HDAC inhibitor pathway activation results in apoptosis and decreased tumor burden following a 7-day quisinostat treatment in the mouse model of synovial sarcoma. This study provides mechanistic support for a particular susceptibility of synovial sarcoma to HDAC inhibition as a means of clinical treatment. .
The estrogen receptor (ER) is a key predictive biomarker in the treatment of breast cancer. There is uncertainty regarding the use of hormonal therapy in the setting of weakly positive ER by immunohistochemistry (IHC). We report intrinsic subtype classification on a cohort of ER weakly positive early-stage breast cancers. Consecutive cases of breast cancer treated by primary surgical resection were retrospectively identified from 4 centers that engage in routine external proficiency testing for breast biomarkers. ER-negative (Allred 0 and 2) and ER weakly positive (Allred 3-5) cases were included. Gene expression profiling was performed using qRT-PCR. Intrinsic subtype prediction was made based upon the PAM50 gene expression signature. 148 cases were included in the series: 60 cases originally diagnosed as ER weakly positive and 88 ER negative. Of the cases originally assessed as ER weakly positive, only 6 (10 %) were confirmed to be of luminal subtype by gene expression profiling; the remaining 90 % of cases were classified as basal-like or HER2-enriched subtypes. This was not significantly different than the fraction of luminal cases identified in the IHC ER-negative cohort (5 (5 %) luminal, 83(95 %) non-luminal). Recurrence-free, and overall, survival rates were similar in both groups (p = 0.4 and 0.5, respectively) despite adjuvant hormonal therapy prescribed in the majority (59 %) of weakly positive ER cases. Weak ER expression by IHC is a poor correlate of luminal subtype in invasive breast cancer. In the setting of highly sensitive and robust IHC methodology, cutoffs for ER status determination and subsequent systemic therapy should be revisited.
Immunohistochemical assessment of nestin and INPP4b provides an accurate, accessible and inexpensive tool to identify basal-like breast cancer subtype in the clinically problematic setting of weak ER positivity. This panel identifies poor prognosis patients who might need strong considerations for non-endocrine-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.