The electrochemical synthesis of chemicals from carbon dioxide, which is an easily available and renewable carbon resource, is of great importance. However, to achieve high product selectivity for desirable C 2 products like ethylene is a big challenge.Here we design Cu nanosheets with nanoscaled defects (2−14 nm) for the electrochemical production of ethylene from carbon dioxide. A high ethylene Faradaic efficiency of 83.2% is achieved. It is proved that the nanoscaled defects can enrich the reaction intermediates and hydroxyl ions on the electrocatalyst, thus promoting C−C coupling for ethylene formation.
Developing highly efficient electrocatalysts based on cheap and earth-abundant metals for CO
2
reduction is of great importance. Here we demonstrate that the electrocatalytic activity of manganese-based heterogeneous catalyst can be significantly improved through halogen and nitrogen dual-coordination to modulate the electronic structure of manganese atom. Such an electrocatalyst for CO
2
reduction exhibits a maximum CO faradaic efficiency of 97% and high current density of ~10 mA cm
−2
at a low overpotential of 0.49 V. Moreover, the turnover frequency can reach 38347 h
−1
at overpotential of 0.49 V, which is the highest among the reported heterogeneous electrocatalysts for CO
2
reduction. In situ X-ray absorption experiment and density-functional theory calculation reveal the modified electronic structure of the active manganese site, on which the free energy barrier for intermediate formation is greatly reduced, thus resulting in a great improvement of CO
2
reduction performance.
Graphene is regarded as a prominent multi-functional flame retardant for use in halogen-free flame retardant polymers with simultaneously improved integrated properties and special functionalities.However, its flame retardant efficiency is not impressive enough due to the weak resistance to thermooxidative decomposition. In order to overcome this problem, the surface of graphene oxide was covered with large amounts of non-flammable silicas through a sol-gel and surface treatment process, and then used to modify the epoxy (EP) resin. Results show that the incorporation of the as-prepared nanosilica/ graphene oxide (m-SGO) hybrid into EP resin not only obviously increases the flame retardancy, mechanical, and thermal stability properties, but also endows EP resin with high thermal conductivity, low dielectric loss, and high dielectric constant. Specifically, the peaks of the heat release rate and total heat release of the modified EP resin with 1.5% m-SGO decrease by 39% and 10% of those of neat EP resin, respectively. These attractive features of m-SGO/EP nanocomposites are attributed to the unique structure and high resistance to oxidative degradation of m-SGO as well as its good interactions with EP resin. The investigation provides a new approach for the preparation of novel core-shell flame retardants through surface wrapping with other flame retardants on SGO and related high performance flame retardant resins. † Electronic supplementary information (ESI) available: The chemical structure of SGO and typical data from TG curves of EP and its nanocomposites (PDF). See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.