Surface-enhanced Raman resonant scattering (SERRS) tags encoded with near-infrared (NIR) Raman reporters showed great potential for in vivo detection owing to their ultrasensitivity. However, in vivo signal stability of such tags is a remaining problem due to the lack of suitable silica coating method because the weakly adsorbed NIR reporters tend to detach from traditional gold nanosubstrates in the ethanol-rich and high pH conditions, which are commonly used for silica coating. Herein, we propose a silica coating method for NIR SERRS tags by using waxberry-like gold nanoparticles (NPs) as substrates. The lipid bilayer of the NPs played a crucial role in the coating, which can encapsulate the NIR Raman reporter via hydrophobic interactions and prevent the interference from a harsh medium. Thus, the silicacoated tags well preserved ultrasensitivity of bare tags and simultaneously gained satisfactory signal stability in vivo. Moreover, the coating method is compatible for the encapsulation of a variety of thiol group-free NIR reporters (as exemplified by DTTC, Cy7, IR792, and DIR), relying on which a tag-pair with distinguishable peaks can be screened (labeling with DTTC and Cy7, respectively). In vivo duplexing detection revealed that the tagpair-labeled liposome was cleared faster in the liver than polydopamine NPs within one mouse. The developed method paves an easy way for gaining high-quality SERRS tags and will promote their in vivo multiplex analysis and diagnostics applications.
Microneedles (MNs) are currently one of the most promising tools for skin interstitial fluid (ISF)-based biosensing, while it is still a challenge to expand the detectable biomarkers in ISF due to limited MNs types and detection techniques. Herein, highly sensitive internal-standard surface-enhanced Raman scattering microneedles (IS-SERS-MNs) were developed, which enabled the reliable detection of bacterial metabolites in ISF as new detectable biomarkers for infection diagnosis. The developed IS-SERS-MNs can not only directly detect pyocyanin (a representative bacterial metabolite) present in mouse dermal ISF but also indirectly detect pyocyanin in the hypodermis via its diffusion into the dermis, revealing a new possible pathway for the source of biomarkers in dermal ISF. Moreover, the SERS signal of pyocyanin was also clearly detected at real mouse wounds, indicating that the developed IS-SERS-MNs have great potential in minimally invasive and painless diagnosis of bacterial infection via a new ISF route. This work not only develops IS-SERS-MNs as a powerful tool for expanding the application of SERS-based MNs but also provides a new chance for ISF-related infection diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.