In this work, a GPU-accelerated fully 3D ordered-subset expectation maximization (OSEM) image reconstruction with point spread function (PSF) modeling was developed for a small animal PET scanner with a long axial field of view (FOV). Dual-ended readout detectors that provided high depth of interaction (DOI) resolution were used for the small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. First, we developed a novel sinogram generation method, in which the dimension of the sinogram was determined first and then an event was assigned to a few neighboring sinogram elements by using weights that are inversely proportional to the distance from the measured line of response (LOR) to the LOR of the sinogram elements. System geometric symmetry, precomputation of LOR-driven ray-tracing and texture memory were applied to accelerate the GPU-based reconstruction. We developed a spatially variant PSF model where the PSF parameters were obtained by using point source images measured at 18 positions in the FOV and a spatial invariant PSF model where the PSF parameters were obtained by using only one image measured at the center FOV. The performance of the image reconstruction method was evaluated by using simulated phantom data as well as phantom and in-vivo mouse data acquired on the scanner. The results showed that the proposed reconstruction method provided better spatial resolution, a higher contrast recovery coefficient and lower noise than the OSEM reconstruction and was more than 1000 times faster than the CPU-based reconstruction. The spatially variant PSF model did not result in any spatial resolution improvement compared to the spatial invariant PSF model, and thus, the latter that is much easier to implement in image reconstruction and can be used in a small animal PET scanner using detectors with very high DOI resolution. A whole body 18F-FDG mouse image with high resolution and a high contrast to noise ratio was obtained by using the proposed reconstruction method.
Object: Obsessive-compulsive disorder (OCD) is a mental disease in which people experience uncontrollable and repetitive thoughts or behaviors. Clinical diagnosis of OCD is achieved by using neuropsychological assessment metrics, which are often subjectively affected by psychologists and patients. In this study, we propose a classification model for OCD diagnosis using functional MR images.Methods: Using functional connectivity (FC) matrices calculated from brain region of interest (ROI) pairs, a novel Riemann Kernel principal component analysis (PCA) model is employed for feature extraction, which preserves the topological information in the FC matrices. Hierarchical features are then fed into an ensemble classifier based on the XGBoost algorithm. Finally, decisive features extracted during classification are used to investigate the brain FC variations between patients with OCD and healthy controls.
Results:The proposed algorithm yielded a classification accuracy of 91.8%.Additionally, the well-known cortico-striatal-thalamic-cortical (CSTC) circuit and cerebellum were found as highly related regions with OCD. To further analyze the cerebellar-related function in OCD, we demarcated cerebellum into three subregions according to their anatomical and functional property. Using these three functional
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.