Conventional aromatic compounds tend to exhibit the formation of sandwich-shaped excimers and exciplexes between their excited and ground states at high concentrations or in their aggregated states, causing their fluorescence to weaken or disappear due to the aggregation-caused quenching (ACQ) effect. This limits their applications in concentrated solutions or solid materials. Herein, for the first time, ACQ-based pyrene (Py) units are covalently connected to the surface of polyethylene/polypropylene nonwoven fabric (PE/PP NWF) via electron beam preradiation-induced graft polymerization followed by chemical modification. The matrix can be considered a solid solvent and Py units as a solid solute, such that the amount of Py units can be controlled by varying the reaction time. The obtained fluorescent fabric not only exhibits remarkable fluorescence properties with high fluorescence intensity, high quantum yield (>90%), and excellent fluorescence stability after laundering or in harsh chemical environments, but the fluorescence color and intensity, quantum yield, and lifetime can also be regulated by employing the ACQ effect. Additionally, the as-prepared fluorescent fabric can effectively distinguish common monocyclic aromatic hydrocarbons via a simple fluorescence response test.
Metal organic frameworks (MOFs) are a distinct family of crystalline porous materials finding extensive applications. Their synthesis often requires elevated temperature and relatively long reaction time. We report here the first case of MOF synthesis activated by high‐energy (1.5 MeV) electron beam radiation from a commercially available electron‐accelerator. Using ZIF‐8 as a representative for demonstration, this type of synthesis can be accomplished under ambient conditions within minutes, leading to energy consumption about two orders of magnitude lower than that of the solvothermal condition. Interestingly, by controlling the absorbed dose in the synthesis, the electron beam not only activates the formation reaction of ZIF‐8, but also partially etches the material during the synthesis affording a hierarchical pore architecture and highly crystalline ZnO nanoparticles on the surface of ZIF‐8. This gives rise to a new strategy to obtain MOF@metal oxide heterostructures, finding utilities in photocatalytic degradation of organic dyes.
Metal organic frameworks (MOFs) are a distinct family of crystalline porous materials finding extensive applications. Their synthesis often requires elevated temperature and relatively long reaction time. We report here the first case of MOF synthesis activated by high-energy (1.5 MeV) electron beam radiation from a commercially available electron-accelerator. Using ZIF-8 as a representative for demonstration, this type of synthesis can be accomplished under ambient conditions within minutes, leading to energy consumption about two orders of magnitude lower than that of the solvothermal condition. Interestingly, by controlling the absorbed dose in the synthesis, the electron beam not only activates the formation reaction of ZIF-8, but also partially etches the material during the synthesis affording a hierarchical pore architecture and highly crystalline ZnO nanoparticles on the surface of ZIF-8. This gives rise to a new strategy to obtain MOF@metal oxide heterostructures, finding utilities in photocatalytic degradation of organic dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.