COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (M pro , also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting M pro. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease M pro as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.
The products of base-catalyzed liquid-phase hydrolysis of lignin depend markedly on the operating conditions. By varying temperature, pressure, catalyst concentration, and residence time, the yield of monomers and oligomers from depolymerized lignin can be adjusted. It is shown that monomers of phenolic derivatives are the only primary products of base-catalyzed hydrolysis and that oligomers form as secondary products. Oligomerization and polymerization of these highly reactive products, however, limit the amount of obtainable product oil containing low-molecular-weight phenolic products. Therefore, inhibition of concurrent oligomerization and polymerization reactions during hydrothermal lignin depolymerization is important to enhance product yields. Applying boric acid as a capping agent to suppress addition and condensation reactions of initially formed products is presented as a successful approach in this direction. Combination of base-catalyzed lignin hydrolysis with addition of boric acid protecting agent shifts the product distribution to lower molecular weight compounds and increases product yields beyond 85%.
Oil and water: A new energy-efficient and atom-economical catalytic route for the production of alkanes and methanol by upgrading the phenolic fraction of bio-oil has been developed. The one-pot aqueous-phase hydrodeoxygenation process is based on two catalysts facilitating consecutive hydrogenation, hydrolysis, and dehydration reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.