A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GWth nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of ν e 's. Comparison of theν e rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (∼1500-1950 m) relative to detectors near the reactors (∼350-600 m) allowed a precise measurement ofν e disappearance. More than 2.5 millionν e inverse beta-decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (December, 2011-July, 2012) with a subsequent 1013 days using the complete configuration of eight detectors (October, 2012-July, 2015. Theν e rate observed at the far detectors relative to the near detectors showed a significant deficit, R ¼ 0.949 AE 0.002ðstatÞAE 0.002ðsystÞ. The energy dependence ofν e disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle sin 2 2θ 13 ¼ 0.0841 AE 0.0027ðstatÞ AE 0.0019ðsystÞ and the effective neutrino mass-squared difference of jΔm 2 ee j ¼ ð2.50 AE 0.06ðstatÞ AE 0.06ðsystÞÞ × 10 −3 eV 2 . Analysis using the exact three-flavor probability found Δm
Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. A precise measurement of reactor electron antineutrino flux and spectrum evolution can be key inputs in improving the knowledge of neutrino mass and mixing as well as reactor nuclear physics and searching for physics beyond the standard model. In this work, the evolution of the flux and spectrum as a function of the reactor isotopic content is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller model based on the conversion method and the SM2018 model based on the summation method. The measured average flux and spectrum, as well as their evolution with the 239 Pu isotopic fraction, are inconsistent with the predictions of the Huber-Mueller model. In contrast, the SM2018 model is shown to agree with the average flux and its evolution but fails to describe the energy spectrum. Altering the predicted IBD spectrum from 239 Pu fission does not improve the agreement with the measurement for either model. The models can be brought into better agreement with the measurements if either the predicted spectrum due to 235 U fission is changed or the predicted 235 U, 238 U, 239 Pu, and 241 Pu spectra are changed in equal measure.
A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of μ eff ν < 2.8 × 10 −11 μ B at 90% C.L. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments. Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magnetic moments matrix for Dirac and Majorana neutrinos, are derived.
We present the simultaneous measurement of the interaction rates R pp , R Be , R pep of pp, 7 Be, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19-2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, collected after an extensive scintillator purification campaign. Using counts per day ðcpdÞ=100 ton as unit, we find R pp ¼ 134 AE 10ðstatÞ þ6 −10 ðsysÞ, R Be ¼ 48.3 AE 1.1ðstatÞ þ0.4 −0.7 ðsysÞ; and R HZ pep ¼ 2.43 AE 0.36ðstatÞ þ0.15 −0.22 ðsysÞ assuming the interaction rate R CNO of CNO-cycle (Carbon, Nitrogen, Oxigen) solar neutrinos according to the prediction of the high metallicity standard solar model, and R LZ pep ¼ 2.65 AE 0.36ðstatÞ þ0.15 −0.24 ðsysÞ according to that of the low metallicity model. An upper limit R CNO < 8.1 cpd=100 ton (95% C.L.) is obtained by setting in the fit a constraint on the ratio R pp =R pep (47.7 AE 0.8 cpd=100 ton or 47.5 AE 0.8 cpd=100 ton according to the high or low metallicity hypothesis).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.