A mechanistic study of upconversion from lanthanides is of great importance for the fundamental research of upconversion materials and their diverse frontier applications. However, the most efficient upconversion of lanthanides is still obtained in a commonly used sensitizer-activator coupled system. Here we report a mechanistic investigation on the upconversion of Er3+ through self-sensitization which is applicable for 808, 980 and 1530 nm excitations. It is found that the cooperative energy transfer upconversion followed by cross-relaxation occurring among Er3+ ions plays a critical role in producing and enhancing the red upconversion for the samples with high dopant concentrations (e.g., >20 mol%). The red upconversion color can be further purified and enhanced by mediating the upconversion dynamics through introducing the lanthanides of Ho3+, Tm3+ and Yb3+, which can effectively contribute to the population in the red emitting state. Moreover, the energy migration in the Er-sublattice was also found to be a possible origin for quenching upconversion, which was proved and effectively suppressed by designing a tri-layered nanostructure where the distribution of Er3+ is spatially controllable. Our results gain access into the insight of upconversion dynamics in self-sensitization induced upconversion which would help the search for other new kinds of upconversion materials.
Materials with synchronous capabilities of color change and actuation have prospects for application in biomimetic dual-stealth camouflage and artificial intelligence. However, color/shape dual-responsive devices involve stimuli that are difficult to control such as gas, light or magnetism, and the devices show poor coordination. Here, a flexible composite film with electrochromic/actuating (238° bending angle) dual-responsive phenomena, excellent reversibility, high synchronization, and fast response speed (< 5 s) utilizes a single active component, W18O49 nanowires. From in situ synchrotron X-ray diffraction, first principles calculations/numerical simulations, and a series of control experiments, the actuating mechanism for macroscopic deformation is elucidated as pseudocapacitance-based reversible lattice contraction/recovery of W18O49 nanowires (i.e. nanostructure change at the atomic level) during lithium ion intercalation/de-intercalation. In addition, we demonstrate the W18O49 nanowires in a solid-state ionic polymer-metal composite actuator that operates stably in air with a significant pseudocapacitive actuation.
co-workers report a mechanistic strategy to probe the energy migration of lanthanides (e.g., Tb 3+ , Gd 3+ , and Yb 3+ ) by constructing an interfacial energy transfer (IET)-mediated nanostructure. This presents an in-depth understanding of the luminescence fundamentals of lanthanides, and also excites new chances for frontier applications of upconversion materials such as information security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.