RNA sequencing can simultaneously identify exonic polymorphisms and quantitate gene expression. Here we report RNA sequencing of developing maize kernels from 368 inbred lines producing 25.8 billion reads and 3.6 million single-nucleotide polymorphisms. Both the MaizeSNP50 BeadChip and the Sequenom MassArray iPLEX platforms confirm a subset of high-quality SNPs. Of these SNPs, we have mapped 931,484 to gene regions with a mean density of 40.3 SNPs per gene. The genome-wide association study identifies 16,408 expression quantitative trait loci. A two-step approach defines 95.1% of the eQTLs to a 10-kb region, and 67.7% of them include a single gene. The establishment of relationships between eQTLs and their targets reveals a large-scale gene regulatory network, which include the regulation of 31 zein and 16 key kernel genes. These results contribute to our understanding of kernel development and to the improvement of maize yield and nutritional quality.
Therapeutic antibodies that target T-cell co-inhibitory molecules display potent antitumor effects in multiple types of cancer. LSECtin is a cell surface lectin of the DC-SIGN family expressed in dendritic cells that inhibits T-cell responses. LSECtin limits T-cell activity in infectious disease, but it has not been studied in cancer. Here we report the finding that LSECtin is expressed commonly in melanomas where it blunts tumor-specific T-cell responses. When expressed in B16 melanoma cells, LSECtin promoted tumor growth, whereas its blockade slowed tumor growth in either wild-type or LSECtin-deficient mice. The tumor-promoting effects of LSECtin were abrogated in Rag1 À/À mice or in response to CD4 þ or CD8 þ T-cell depletion. Mechanistic investigations determined that LSECtin inhibited the proliferation of tumor-specific effector T cells by downregulating the cell cycle kinases CDK2, CDK4, and CDK6. Accordingly, as expressed in B16, tumor cells LSECtin inhibited tumorspecific T-cell responses relying upon proliferation in vitro and in vivo. Notably, LSECtin interacted with the coregulatory molecule LAG-3, the blockade of which restored IFNg secretion that was reduced by melanomaderived expression of LSECtin. Together, our findings reveal that common expression of LSECtin in melanoma cells engenders a mechanism of immune escape, with implications for novel immunotherapeutic combination strategies. Cancer Res; 74(13); 3418-28. Ó2014 AACR.
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.