Enhancement of trace gas detectability using photoacoustic spectroscopy requires the effective suppression of strong background noise for practical applications. An upgraded infrared broadband trace gas detection configuration was investigated based on a Fourier transform infrared (FTIR) spectrometer equipped with specially designed T-resonators and simultaneous differential optical and photoacoustic measurement capabilities. By using acetylene and local air as appropriate samples, the detectivity of the differential photoacoustic mode was demonstrated to be far better than the pure optical approach both theoretically and experimentally, due to the effectiveness of light-correlated coherent noise suppression of non-intrinsic optical baseline signals. The wavelet domain denoising algorithm with the optimized parameters was introduced in detail to greatly improve the signal-to-noise ratio by denoising the incoherent ambient interference with respect to the differential photoacoustic measurement. The results showed enhancement of sensitivity to acetylene from 5 ppmv (original differential mode) to 806 ppbv, a fivefold improvement. With the suppression of background noise accomplished by the optimized wavelet domain denoising algorithm, the broadband differential photoacoustic trace gas detection was shown to be an effective approach for trace gas detection.
A ppb-level H2S and CO photoacoustic spectroscopy (PAS) gas sensor was developed by using a two-stage commercial optical fiber amplifier with a full output power of 10 W. Two near-infrared diode lasers with the central wavenumbers of 6320.6 cm−1 and 6377.4 cm−1 were employed as the excitation laser source. A time-division multiplexing method was used to simultaneously detect CO and H2S with an optical switch. A dual-resonator structural photoacoustic cell (PAC) was theoretically simulated and designed with a finite element analysis. A µV level background noise was achieved with the differential and symmetrical PAC. The performance of the multi-component sensor was evaluated after the optimization of frequency, pressure and modulation depth. The minimum detection limits of 31.7 ppb and 342.7 ppb were obtained for H2S and CO at atmospheric pressure.
In the power industry, sulfur hexafluoride (SF6) as an insulating gas is widely used in gas-insulated switchgears (GISs). Owing to the latent inner insulation defects of GIS, various SF6 gas decompositions are generated in the process of partial superheating and partial discharge (PD). The decomposition components and concentrations are different under different PD types. A number of gas sensors were reported for the detection of these decompositions. Photoacoustic spectroscopy (PAS) gas sensors have been developed for many applications owing to their high sensitivity and selectivity, such as gas pollutant detection, industrial process control, and non-invasive medical diagnosis. Due to the SF6 physical constants being different from that of nitrogen (N2) or air, the sensor structure should be redesigned. A detailed review of four different types of PAS-based gas sensors is discussed and compared.
In SF 6 insulated high-voltage gas power systems, H 2 O is the most problematic impurity which not only decreases insulation performance but also creates an acidic atmosphere that promotes corrosion. Corrosion damages electrical equipment and leads to leaks, which pose serious safety hazards to people and the environment. A QEPAS-based sensor system for the sub-ppm level H 2 O detection in SF 6 buffer gas was developed by use of a near-infrared commercial DFB diode laser. Since the specific physical constants of SF 6 are strongly different from that of N 2 or air, the resonant frequency and Q -factor of the bare quartz tuning fork (QTF) had changed to 32,763 Hz and 4173, respectively. The optimal vertical detection position was 1.2 mm far from the QTF opening. After the experimental optimization of acoustic micro-resonator (AmR) parameters, gas pressures, and modulation depths, a detection limit of 0.49 ppm was achieved for an averaging time of 1 s, which provided a powerful prevention tool for the safety monitoring in power systems.
Photoacoustic spectroscopy (PAS), as a nondestructive method, permits high sensitivity and selectivity in trace gas detection fields. Advances in differential PAS configurations have dramatically suppressed the background noise and triggered the detectivity improvement. A detailed review on the development of differential photoacoustic gas sensors is presented: using two identical cavity differential cells and optical path types provides good performance for coherent noise suppression, and differential mode excitation technique, which evaluates the signal ratios with two frequency excitations, suppresses the common mode noise and signal drifts generated by the light power or the responsivity of the PA system. An overview of the latest developments of the differential PAS sensors is reported. Distinguished results in terms of sensitivity, selectivity, and miniaturization are presented. The advantages and limitations of differential sensors with different photoacoustic sensing technologies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.