Aims Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). The gut microbiota dysbiosis is involved in age-related diseases. However, whether the aged-associated dysbiosis contributes to age-related AF is still unknown. Direct demonstration that the aged gut microbiota is sufficient to transmit the enhanced AF susceptibility in a young host via microbiota-intestinal barrier-atria axis has not yet been reported. This study aimed to determine whether gut microbiota dysbiosis affects age-related AF. Methods and Results Herein, by using a fecal microbiota transplantation (FMT) rat model, we demonstrated that the high AF susceptibility of aged rats could be transmitted to a young host. Specially, we found the dramatically increased levels of circulating lipopolysaccharide (LPS) and glucose led to the up-regulated expression of NLR family pyrin domain containing 3 (NLRP3)-inflammasome, promoting the development of AF which depended on the enhanced atrial fibrosis in recipient host. Inhibition of inflammasome by a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, resulted in a lower atrial fibrosis and AF susceptibility. Then we conducted cross-sectional clinical studies to explore the effect of aging on the altering trends with glucose levels and circulating LPS among clinical individuals in two China hospitals. We found that both of serum LPS and glucose levels were progressively increased in elderly patients as compared with those young. Furthermore, the aging phenotype of circulating LPS and glucose levels, intestinal structure and atrial NLRP3-inflammasome of rats were also confirmed in clinical AF patients. Finally, aged rats colonized with youthful microbiota restored intestinal structure and atrial NLRP3-inflammasome activity, which suppressed the development of aged-related AF. Conclusions Collectively, these studies described a novel causal role of aberrant gut microbiota in the pathogenesis of age-related AF, which indicates that the microbiota-intestinal barrier-atrial NLRP3 inflammasome axis may be a rational molecular target for the treatment of aged-related arrhythmia disease. Translational Perspective The current study demonstrates that aged-associated microbiota dysbiosis promotes AF in part through a microbiota–gut–atria axis. Increased AF susceptibility due to enhanced atrial NLRP3-inflammasome activity by LPS and high glucose was found in an aged FMT rat model, and also confirmed within elderly clinical individuals. In a long-term FMT rat study, the AF susceptibility was ameliorated by treatment with youthful microbiota. The present findings can further increase our understanding of aged-related AF and address a promising therapeutic strategy that involves modulation of gut microbiota composition.
Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis.
Heart failure (HF) is a major cause of morbidity and mortality in patients with various cardiovascular diseases. Restoration of cardiac function is critical in improving the clinical outcomes of patients with HF. Long noncoding RNAs are widely involved in the development of multiple cardiac diseases, whereas their role in regulating cardiac function remains unclear. In this study, we found that the expression of long noncoding RNA–DACH1 (dachshund homolog 1) was upregulated in the failing hearts of mice and human. We tested the hypothesis that the intronic long noncoding RNA of DACH1 (LncDACH1) can participate in the regulation of cardiac function and HF. Transgenic overexpression of LncDACH1 in the cardiac myocytes of mice led to impaired cardiac function, reduced calcium transient and cell shortening, and decreased SERCA2a (sarcoplasmic reticulum calcium ATPase 2a) protein expression. In contrast, conditional knockout of LncDACH1 in cardiac myocytes resulted in increased calcium transient, cell shortening, SERCA2a protein expression, and improved cardiac function of transverse aortic constriction induced HF mice. The same qualitative data were obtained by overexpression or knockdown of LncDACH1 with adenovirus carrying LncDACH1 or its siRNA. Moreover, therapeutic administration of adenovirus carrying LncDACH1 siRNA to transverse aortic constriction mice abolished the development of HF. Mechanistically, LncDACH1 directly binds to SERCA2a. Overexpression of LncDACH1 augments the ubiquitination of SERCA2a. LncDACH1 upregulation impairs cardiac function by promoting ubiquitination-related degradation of SERCA2a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.