LncRNAs play essential regulatory roles in pancreatic cancer (PC) tumorigenesis and progression. We aimed to investigate the role of lncRNA CERS6-AS1 in PC. CERS6-AS1 expression was determined in PC tissues and cell lines by PCR analysis. The roles of CERS6-AS1 on proliferation, migration, invasion, and epithelial to mesenchymal transition (EMT) were confirmed via CCK-8 assay, EDU assay, transwell assay, wound healing assay, and western blot assay. Besides, the interaction between CERS6-AS1 and their target genes was verified by luciferase report assays and RIP assays. Animal assays and clinical data analysis were performed to validate the functions in vivo. We found that lncRNA CERS6-AS1 was highly expressed in PC tissues and cells. Additionally, high expression of CERS6-AS1 was obviously associated with poor prognosis. Functional assays demonstrated that CERS6-AS1 downregulation significantly inhibited PC cell growth and migration. Moreover, CERS6-AS1 exerted as a molecular sponge for miR-217-5p (miR-217), and miR-217 was confirmed as a potential target of CERS6-AS1. Subsequently, miR-217 suppressed PC cell proliferation and metastasis by directly targeting YWHAG, which interacted with RAF1 and promoted its phosphorylation, leading to RAF1-mediated ERK signaling activation and translocation of phosphorylated ERK from the cytoplasm to the nucleus. Mechanically, CERS6-AS1 silencing significantly inhibited PC cell proliferation and metastasis via a miR-217/YWHAG/RAF1 signaling axis. CERS6-AS1 exerts as a carcinogen in PC to promote malignant features and behaves as a competitive endogenous RNA for miR-217. We identified CERS6-AS1 as a potential biomarker or therapeutic target to improve PC diagnosis and treatment outcomes.
Recently, long non-coding RNAs (lncRNA) have been proven to regulate pancreatic cancer (PC) progression. We aimed to explore the pathogenesis of LINC00941 in PC regarding protein binding. By using PCR analysis, we found that LINC00941 was overexpressed in PC tissues and was higher in patients with liver metastasis than in patients without liver metastasis. In addition, high LINC00941 expression was associated with a poor prognosis. Functional experiments and mice models were respectively used to evaluate PC cell proliferation and migration in vitro and in vivo. The results suggested that LINC00941 overexpression promoted PC proliferation and metastasis. Subsequently, RNA pull-down, mass spectrometry (MS), and RNA-binding protein immunoprecipitation (RIP) were performed to identify LINC00941-interacting proteins. The results suggested that ANXA2 was the potential LINC00941-interacting protein. Nucleotides 500–1390 of LINC00941 could bind to the Annexin 1 domain of ANXA2. LINC00941-mediated malignant phenotype of PC was reversed by ANXA2 depletion. Co-immunoprecipitation (Co-IP) followed by MS was conducted to determine the potential interacting protein of LINC00941. The results illustrated that NEDD4L, an E3 ligase involved in ubiquitin-mediated protein degradation, bound to the Annexin 1 domain of ANXA2 and promoted its degradation. Mechanically, LINC00941 functioned as a decoy to bind to ANXA2 and suppressed its degradation by enclosing the domain that binds to NEDD4L. Eventually, LINC00941 upregulated ANXA2 and activated FAK/AKT signaling, increasing PC cell proliferation and metastasis. This study indicates that LINC00941 promotes PC proliferation and metastasis by binding ANXA2 and potentiating its stability, leading to the activation of FAK/AKT signaling. Our data demonstrate that LINC00941 may serve as a novel target for prognosis and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.