HIF-α activation by PHD inhibitor L-Mim has dual roles in the development of CKD in the rat RK model depending on the timing of the administration and possibly the activated isoform of HIF-α.
There was a transient HIF-α activation in the remnant kidney of rats at the early stage following subtotal nephrectomy. L-mimosine administered in later stages re-activated HIF-α and reduced tubulointerstitial fibrosis.
Background:
A few studies have shown that urinary kidney injury molecule-1 (uKIM-1) levels are increased in acute kidney injury (AKI); however, the correlation between uKIM-1 and histological tubular injury, which is considered to be the gold standard for evaluating renal damage and predicting prognosis, is still unclear. We performed this study to determine whether the predicted value of uKIM-1 is correlated with renal KIM-1 (tKIM-1) expression and tissue damage in AKI patients.
Methods:
This retrospective study recruited 14 healthy individuals and 27 biopsy-proven acute tubular injury (ATI) patients. uKIM-1 and plasma KIM-1 (sKIM-1) levels were measured by ELISA, and tKIM-1 expression was evaluated by immunohistochemistry.
Results:
Elevated levels of urinary, plasma, and renal KIM-1 were found in ATI patients. The uKIM-1 concentration was positively correlated with tKIM-1 expression and reflected the severity of renal histological injury. The outcome of ATI was associated with uKIM-1 expression: the ATI patients with higher uKIM-1 levels had an increased potential for an incomplete recovery of renal function during follow-up. Additionally, the level of KIM-1, regardless of source, was negatively related to the eGFR, and ROC curve analysis revealed that the ROC-AUC was 0.923 (
p
= 0.000) for the diagnosis of ATI based on a combination of high uKIM-1 and sKIM-1 levels.
Conclusion:
The uKIM-1 level corresponds with the severity of renal histological damage and can be a potential reliable predictor of adverse renal outcomes in ATI patients. Moreover, combining uKIM-1 and sKIM-1 can increase the sensitivity and specificity of the diagnosis of severe ATI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.