The EUropean RAdiation DOSimetry Group (EURADOS) initiated in 2005 the CONRAD Project, a Coordinated Network for Radiation Dosimetry funded by the European Commission (EC), within the 6th Framework Programme (FP). The main purpose of CONRAD is to generate a European Network in the field of Radiation Dosimetry and to promote both research activities and dissemination of knowledge. The objective of CONRAD Work Package 5 (WP5) is the coordination of research on assessment and evaluation of internal exposures. Nineteen institutes from 14 countries participate in this action. Some of the activities to be developed are continuations of former European projects supported by the EC in the 5th FP (OMINEX and IDEAS). Other tasks are linked with ICRP activities, and there are new actions never considered before. A collaboration is established with CONRAD Work Package 4, dealing with Computational Dosimetry, to organise an intercomparison on Monte Carlo modelling for in vivo measurements of (241)Am deposited in a knee phantom. Preliminary results associated with CONRAD WP5 tasks are presented here.
The EUropean RAdiation DOSimetry Group, EURADOS, initiated in 2005 the CONRAD Project, a Coordinated Network for Radiation Dosimetry funded by the European Commission (EC), within the 6th Framework Programme (FP). The main purpose of CONRAD is to generate a European Network in the field of Radiation Dosimetry, to promote both research activities and dissemination of knowledge. The objective of CONRAD Work Package 5 (WP5) is the coordination of research on assessment and evaluation of internal exposures. Nineteen institutes from 14 countries participate in this action. Some of the activities to be developed are continuations of former European projects supported by the EC in the 5th FP (OMINEX and IDEAS). Other tasks are linked with ICRP activities, and there are new actions never considered before. A collaboration is established with CONRAD Work Package 4, dealing with Computational Dosimetry, to organise an intercomparison on Monte Carlo modelling for in vivo measurements of 241 Am deposited in a knee phantom. Preliminary results associated with CONRAD WP5 tasks are presented here.
Wildlife protection has become of regulatory interest since the International Commission on Radiological Protection (ICRP) developed an approach to assess the level of radiological protection specifically for animals and plants. For the purpose of demonstrating compliance with regulation to protect the environment against routine authorised discharges from nuclear facilities, the wide variety of biota inhabiting an ecosystem needs to be condensed to a limited set of representative organisms, as proposed by the ICRP with a set of ‘reference animals and plants’ which can be considered representative of many other species. It is now recommended in the International Atomic Energy Agency Safety Standards, and internationally accepted, that the use of such a limited number of organisms to represent a pool of species is adequate for radiation protection purposes, particularly in planned exposure situations. Adding site-specific species to that set of surrogate species can respond to various interests, such as ensuring a site-specific context to the assessment that addresses stakeholder interests and can aid in stakeholder consultation and risk communication. Moreover, there is a need to question whether the use of the set of surrogate organisms is conservative enough to cover a wider range of biodiversity. Previous studies partially answered this question and this paper adds a range of test cases. A selection of hypothetical representations of possible site-specific species are assessed on the basis of possible variations in size (mass) and occupancy habits. Dose rates are evaluated to determine the greatest difference between hypothetical organisms and those for reference organisms (ROs), considering radionuclides (RNs) potentially discharged in atmospheric routine release from different nuclear facilities. Differences observed in the results between hypothetical organisms and ROs were less than one order of magnitude in all cases, the difference being dependent on the RNs considered. These findings do not preclude the inclusion of site-specific species in environmental radiological assessments if it is considered necessary, but they provide reassurance that using ROs for radiological impact assessments in the case of routine atmospheric discharges is sufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.