In this letter we report on an all optical-fiber approach to the generation of ultra-low noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultra stable laser source to generate an 11.55 GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz from the carrier. The residual frequency instability of the microwave signals derived from the two optical frequency combs is below 2.3x10 -16 at 1s and about 4x10 -19 at 6.5x10 4 s (in 5Hz Bandwidth, three days continuous operation).
We use two fiber-based femtosecond frequency combs and a low-noise carrier suppression phase detection system to characterize the optical to microwave synchronization achievable with such frequency divider systems. By applying specific noise reduction strategies, a residual phase noise as low as -120 dBc/Hz at 1 Hz offset frequency from a 11.55 GHz carrier is measured. The fractional frequency instability from a single optical-to-frequency divider is 1.1 × 10 −16 at 1 s averaging down to below 2 × 10 −19 after only 1000 s. The corresponding rms time deviation is lower than 100 attoseconds up to 1000 s averaging duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.