Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.
Gene therapy directed to the entire brain is feasible and may be beneficial to children with Hurler's syndrome. The possibility of subacute encephalitis emphasizes the importance of preventing immune response against IDUA, a problem that needs to be considered in similar therapies for other genetic defects.
Severe deficiency in lysosomal β-glucuronidase (β-glu) enzymatic activity results in mucopolysaccharidosis (MPS) VII, an orphan disease with symptoms often appearing in early childhood. Symptoms are variable, but many patients have multiple organ disorders including neurological defects. At the cellular level, deficiency in β-glu activity leads to abnormal accumulation of glycosaminoglycans (GAGs), and secondary accumulation of GM2 and GM3 gangliosides, which have been linked to neuroinflammation. There have been encouraging gene transfer studies in the MPS VII mouse brain, but this is the first study attempting the correction of the >200-fold larger and challenging canine MPS VII brain. Here, the efficacy of a helper-dependent (HD) canine adenovirus (CAV-2) vector harboring a human GUSB expression cassette (HD-RIGIE) in the MPS VII dog brain was tested. Vector genomes, β-glu activity, GAG content, lysosome morphology and neuropathology were analyzed and quantified. Our data demonstrated that CAV-2 vectors preferentially transduced neurons and axonal retrograde transport from the injection site to efferent regions was efficient. HD-RIGIE injections, associated with mild and transient immunosuppression, corrected neuropathology in injected and noninjected structures throughout the cerebrum. These data support the clinical evaluation of HD CAV-2 vectors to treat the neurological defects associated with MPS VII and possibly other neuropathic lysosomal storage diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.