Identification of a non-thermal X-ray burst with the Galactic magnetar SGR J1935+2154 and a fast radio burst using
We present the X-ray timing results of the new black hole candidate (BHC) MAXI J1535-571 during its 2017 outburst from Hard X-ray Modulation Telescope (Insight -HXMT) observations taken from 2017 September 6 to 23. Following the definitions given by Belloni (2010), we find that the source exhibits state transitions from Low/Hard state (LHS) to Hard Intermediate state (HIMS) and eventually to Soft Intermediate state (SIMS). Quasi-periodic oscillations (QPOs) are found in the intermediate states, which suggest different types of QPOs. With the large effective area of Insight -HXMT at high energies, we are able to present the energy dependence of the QPO amplitude and centroid frequency up to 100 keV which is rarely explored by previous satellites. We also find that the phase lag at the type-C QPOs centroid frequency is negative (soft lags) and strongly correlated with the centroid frequency. By assuming a geometrical origin of type-C QPOs, the source is consistent with being a high inclination system.
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
We report on analysis of observations of the bright transient X-ray pulsar Swift J0243.6+6124 obtained during its 2017-2018 giant outburst with Insight-HXMT, NuSTAR, and Swift observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields.
We performed the broadband (1–100 keV) spectral analysis of the first Galactic Be ultraluminous X-ray pulsar (BeULX) Swift J0243.6+6124 observed by Insight-HXMT during the 2017−2018 outburst. The results show spectral transitions at two typical luminosities, roughly consistently with those reported previously via pure timing analysis. We find that the spectrum evolves and becomes softer and has higher cutoff energies until the luminosity reaches L 1 (∼1.5 × 1038 erg s−1). Afterwards the spectrum becomes harder with lower cutoff energies until the luminosity increases to L 2 (∼4.4 × 1038 erg s−1), around which the second spectral transition occurs. Beyond L 2, the spectrum softens again and has larger cutoff energies. Similar behaviors were observed previously in other high-mass X-ray binary systems (HMXBs), especially for the second transition at higher luminosities, which is believed to have a correlation with the magnetic field of the harbored neutron star. Accordingly, we speculate that Swift J0243.6+6124 owns a neutron star with magnetic field strength >1013 G. The spectral transition at around L 1 of Swift J0243.6+6124 is first observed thoroughly for any HMXB outburst characterized by strong evolution of the thermal component: the temperature of the blackbody drops sharply accompanied by a sudden increase of the blackbody radius. These spectral transitions can in principle be understood in a general scenario of balancing the emission patterns between the pencil and the fan beams at the magnetic pole, for which the extreme brightness of Swift J0243.6+6124 may provide an almost unique lab to probe the details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.