[1] Multiple dipolarization fronts were observed by THEMIS spacecraft in the near-Earth magnetotail during a substorm. The dipolarization fronts were located at the leading edge of earthward propagating plasma bubbles. Major energetic electron flux enhancements were observed at the dipolarization fronts, which were also associated with large wave fluctuations extending from below the lower hybrid frequency to above the electron cyclotron frequency. Intense electric field wave packets, primarily contributed by the Hall electric field and lower hybrid drift (LHD) wave, were observed right at the front, which was a thin current layer with size of the order of the ion inertial length. The LHD wave was believed to be generated by a diamagnetic current in the presence of density and temperature gradients. Electrostatic electron cyclotron harmonic (ECH) waves were detected slightly after the front. The ECH waves were probably generated by the positive slope of the electron perpendicular velocity distribution. Both of these waves are suggested to be able to heat electrons. The observation of these waves at the dipolarization front could be important for the understanding of electron energization during substorm injection, as well as the mechanism of current disruption.
Abstract. Multiple dipolarization fronts (DFs) were observed by Cluster spacecraft in the magnetotail during a substorm. These DFs were kinetic structures, embedded in the bursty plasma flow, and moved earthward (mainly) and dawnward. Intense electric field, parallel and perpendicular currents were detected in the DF layer. These front layers were energy dissipation region (load region) where the energy of electromagnetic fields were transferred to the plasma thermal and kinetic energy. This dissipation was dominated by electrons. There were enhancements of plasma waves around the DF region: wavelet results show that wave activities around the ion cyclotron frequency in the front layer were generated by Alfvén ion cyclotron instability; whistler waves were also detected before, during and after the DFs, which are triggered by electron temperature anisotropy and coincident with enhancement of energetic electron fluxes. The observation of these waves could be important for the understanding of evolution of DF and electron energization during the substorm. We discuss the generation mechanism of the DFs and suggest that these DFs were generated in the process of transient reconnection, and then traveled toward the Earth.
The Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) in a symmetric reconnection in the Earth’s magnetotail. The EDR contained a guide field of about 2 nT, which was 13% of the magnetic field in the inflow region, and its thickness was about 2 local electron inertial lengths. Intense energy dissipation, a super-Alfvénic electron jet, electron nongyrotropy, and crescent-shaped electron velocity distributions were observed in association with this EDR. These features are similar to those of the EDRs in asymmetric reconnection at the dayside magnetopause. Electrons gained about 50% of their energy from the immediate upstream to the EDR. Crescent electron distributions were seen at the boundary of the EDR, while highly curved magnetic field lines inside the EDR may have gyrotropized the electrons. The EDR was characterized by a parallel current that was carried by antiparallel drifting electrons that were probably accelerated by a parallel electric field along the guide field. These results reveal the essential electron physics of the EDR and provide a significant example of an EDR in symmetric reconnection with a weak guide field.
[1] We present one case study of magnetic islands and energetic electrons in the reconnection diffusion region observed by the Cluster spacecraft. The cores of the islands are characterized by strong core magnetic fields and density depletion. Intense currents, with the dominant component parallel to the ambient magnetic field, are detected inside the magnetic islands. A thin current sheet is observed in the close vicinity of one magnetic island. Energetic electron fluxes increase at the location of the thin current sheet, and further increase inside the magnetic island, with the highest fluxes located at the core region of the island. We suggest that these energetic electrons are firstly accelerated in the thin current sheet, and then trapped and further accelerated in the magnetic island by betatron and Fermi acceleration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.