Regression analysis on the multi-tokamak database has been performed, but it appears that the database is not conditioned sufficiently well to yield a new scaling for this type of plasma.Coordinated experiments on size scaling using the dimensionless parameter scaling approach find a weaker scaling with normalized gyroradius than the standard H-mode scaling. Preliminary studies on scaling with collision frequency show a favorable scaling stronger than the standard H-mode scaling. Coordinated modeling activity has resulted in successful benchmarking of modeling codes in the ITER regime. Validation of transport models using these codes on present-day expeirments is in progress, but no single model has been shown to capture the variations seen in the experiments. However, projection to ITER using these models is in general agreement with the favorable projections found with the empirical scalings.
Recent progress on ITER steady-state (SS) scenario modeling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two steady state scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current
The progress made in understanding spontaneous toroidal rotation reversals in tokamaks is reviewed and current ideas to solve this ten-year-old puzzle are explored. The paper includes a summarial synthesis of the experimental observations in AUG, C-Mod, KSTAR, MAST and TCV tokamaks, reasons why turbulent momentum transport is thought to be responsible for the reversals, a review of the theory of turbulent momentum transport and suggestions for future investigations.
Typical ELMy H-mode discharges have been obtained in the KSTAR tokamak with the combined auxiliary heating of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). The minimum external heating power required for the L–H transition is about 0.9 MW for a line-averaged density of ∼2.0 × 1019 m−3. There is a clear indication of the increase in the L–H threshold power with decreasing density for densities lower than ∼2 × 1019 m−3. The L–H transitions typically occurred shortly after the beginning of plasma current flattop (Ip = 0.6 MA) period and after the fast shaping to a highly elongated double-null divertor configuration. The maximum heating power available was marginal for the L–H transition, which is also implied by the relatively slow transition time (>10 ms) and the synchronization of the transition with large sawtooth crashes. The initial analysis of thermal energy confinement time (τE) indicates that τE is higher than the prediction of multi-machine scaling laws by 10–20%. A clear increase in electron and ion temperature in the pedestal is observed in the H-mode phase but the core temperature does not change significantly. On the other hand, the toroidal rotation velocity increased over the whole radial range in the H-mode phase. The measured ELM frequency was around 10–30 Hz for the large ELM bursts and 50–100 Hz for the smaller ones. In addition, very small and high frequency (200–300 Hz) ELMs appeared between large ELM spikes when the ECRH is added to the NBI-heated H-mode plasmas. The drop of total stored energy during a large ELM is up to 5% in most cases.
Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65-5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into He plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this work, various H/He scenarios at a wide range of plasma current (7.5-15 MA) and field (2.65-5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.