We report high-resolution high-energy photoemission spectra together with parameter-free LDA + DMFT (local density approximation + dynamical mean-field theory) results for Sr1-xCaxVO3, a prototype 3d(1) system. In contrast to earlier investigations the bulk spectra are found to be insensitive to x. The good agreement between experiment and theory confirms the bulk sensitivity of the high-energy photoemission spectra.
The interface between LaAlO(3) and SrTiO(3) hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O vacancies in the SrTiO(3). While photovoltage effects in the polar LaAlO(3) layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO(3) is compensated by surface O vacancies serving also as a charge reservoir.
Electron correlations are known to play an important role in determining the unusual physical properties of a variety of compounds. Such properties include high-temperature superconductivity, heavy fermion behaviour and metal-to-insulator transitions. High-resolution photoelectron spectroscopy (PES) provides a means of directly probing the electronic states (particularly those near the Fermi level) in these materials, but the short photoelectron mean free paths (< or = 5 A) associated with the low excitation energies conventionally used (< or = 120 eV) make this a surface-sensitive technique. Now that high-resolution PES is possible at much higher energies, with mean free paths as long as 15 A (ref. 6), it should become feasible to probe the bulk electronic states in these materials. Here we demonstrate the power of this technique by applying it to the cerium compounds CeRu2Si2 and CeRu2. Previous PES studies of these compounds revealed very similar spectra for the Ce 4f electronic states, yet it is expected that such states should be different owing to their differing degrees of hybridization with other valence bands. Our determination of the bulk Ce 4f electronic states of these compounds resolves these differences.
Quaternary Heusler alloys Co2Cr1−xFexAl with varying Cr to Fe ratio x were investigated experimentally and theoretically. The electronic structure and spectroscopic properties were calculated using the full relativistic Korringa–Kohn–Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder. Magnetic effects are included using spin dependent potentials in the local spin density approximation.Magnetic circular dichroism in x-ray absorption was measured at the L2,3 edges of Co, Fe and Cr of the pure compounds and the x = 0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. Resonant (560–800 eV) soft x-ray as well as high resolution–high energy (⩾3.5 keV) hard x-ray photo emission was used to probe the density of the occupied states in Co2Cr0.6Fe0.4Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.