We describe and discuss the global properties of 45 gamma-ray bursts (GRBs) observed by HETE-2 during the first three years of its mission, focusing on the properties of X-Ray Flashes (XRFs) and X-ray-rich GRBs (XRRs). We find that the numbers of XRFs, XRRs, and GRBs are comparable. We find that the
Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.
Abstract. We present a spectral analysis of 35 GRBs detected with the HETE-2 gamma-ray detectors (the FREGATE instrument) in the energy range 7-400 keV. The GRB sample analyzed is made of GRBs localized with the Wide Field X-ray Monitor onboard HETE-2 or with the GRB Interplanetary Network. We derive the spectral parameters of the time-integrated spectra, and present the distribution of the low-energy photon index, alpha, and of the peak energy, E p . We then discuss the existence and nature of the recently discovered X-Ray Flashes and their relationship with classical GRBs.
We report High Energy Transient Explorer 2 (HETE-2) Wide Field X-Ray Monitor/French Gamma Telescope observations of the X-ray flash XRF 020903. This event was extremely soft: the ratio log ðS X =S Þ ¼ 0:7, where S X and S are the fluences in the 2-30 and 30-400 keV energy bands, is the most extreme value observed so far by HETE-2. In addition, the spectrum has an observed peak energy of E obs peak < 5:0 keV (99.7% probability upper limit), and no photons were detected above $10 keV. The burst is shorter at higher energies, which is similar to the behavior of long gamma-ray bursts (GRBs). We consider the possibility that the burst lies at very high redshift and that the low value of E obs peak is due to the cosmological redshift, and show that this is very unlikely. We find that the properties of XRF 020903 are consistent with the relation between the fluences S(7-30 keV) and S(30-400 keV), found by Barraud et al. for GRBs and X-ray-rich GRBs, and are consistent with the extension by a decade of the hardness-intensity correlation found by the same authors. Assuming that XRF 020903 lies at a redshift z ¼ 0:25, as implied by the host galaxy of the candidate optical and radio afterglows of this burst, we find that the properties of XRF 020903 are consistent with an extension by a factor $300 of the relation between the isotropic-equivalent energy E iso and the peak E peak of the F spectrum (in the source frame of the burst) found by Amati et al. for GRBs. The results presented in this paper therefore provide evidence that X-ray flashes (XRFs), X-ray-rich GRBs, and GRBs form a continuum and are a single phenomenon. The results also impose strong constraints on models of XRFs and X-ray-rich GRBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.