The discovery of materials with improved functionality can be accelerated by rational material design.1 Heusler compounds with tunable magnetic sublattices allow to implement this concept to achieve novel magnetic properties. 2 Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a similarly large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. We demonstrate the applicability of our design concept on a second material, Mn-1 Fe-Ga, with a magnetic transition above room temperature, exemplifying the universality of the concept and the feasibility of room-temperature applications. Our study points to a new direction for novel magneto-electronic devices. At the same time it suggests a new route for realizing rare-earth free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.Exchange bias corresponds to a shift of the hysteresis loop of a ferromagnet along the magnetic field axis due to interfacial exchange coupling with an adjacent antiferromagnet. fully compensated magnet with a compensation point for a particular Mn/Pt ratio. This design scheme is schematically depicted in Fig. 1. From first-principles calculations, it follows that the critical composition with the zero magnetization is achieved in the solid solution Mn 3−x Pt x Ga at a Pt content of about x 0 = 0.59, which is in good agreement with the experimental findings. On optimizing the Mn/Pt ratio in Mn 3−x Pt x Ga, we always find a small lack of compensation in the material, due to the formation of FM clusters by anti-site disorder. This leads to an exceptionally large bulk EB and a large coercivity. In contrast to an artificial antiferromagnet, which is a thin film structure composed of two ferromagnetic layers separated by a coupling layer 9 , here we combine two isostructural ferrimagnetic compounds Mn 3 Ga and Mn 2 PtGa to obtain an intrinsically anisotropic compensated magnetic state on an atomic scale in a bulk material.In order to characterize the magnetic properties of Mn 3−x Pt x Ga we have measured the temperature dependence of the low field magnetization, M(T ). We find a systematic increase in the 4 ferrimagnetic Néel temperature (T N ) with increasing Mn content as shown in Fig. 2. The irreversibility between the ZFC and FC curves reflects the appearance of coercivity. We suggest that FM clusters embedded in the compensated host are the source of this irreversibility. NMR measurements confirm that these clusters originate from random swaps between Pt in the Mn-Pt planes and Mn in the Mn-Ga planes ( Supplementary Fig. 2). The irreversibility between ZFC and FC M(T ) curves increases with increasing magnetic field demonstrating that cooling in higher fields helps the FM clusters to grow in siz...
High-quality single crystals of NaYbSe2, which resembles a perfect triangular-lattice antiferromagnet without the intrinsic disorder, are investigated by magnetization and specific-heat, as well as the local probe techniques nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The low-field measurements confirm the absence of any spin freezing or long-range magnetic order down to 50 mK, which suggests a quantum spin liquid ground (QSL) state with gapless excitations. Instability of the QSL state is observed upon applying magnetic fields. For the H⊥c direction, a field-induced magnetic phase transition is observed above 2 T from the Cp(T ) data, agreeing with a clear Ms 3 plateau of M (H), which is associated with an up-up-down (uud) spin arrangement. For the H c direction, a field-induced transition could be evidenced at a much higher field range (9 -21 T). The 23 Na NMR measurements provide microscopic evidence for field-induced ordering for both directions. A reentrant behaviour of TN, originating from the thermal and quantum spin fluctuations, is observed for both directions. The anisotropic exchange interactions J ⊥ 4.7 K and Jz 2.33 K are extracted from the modified bond-dependent XXZ model for the spin-1 2 triangular-lattice antiferromagnet. The absence of magnetic long-range order at zero fields is assigned to the effect of strong bond-frustration, arising from the complex spin-orbit entangled 4f ground state. Finally, we derive the highly anisotropic magnetic phase diagram, which is discussed in comparison with the existing theoretical models for spin-1 2 triangular-lattice antiferromagnets. :1911.12712v1 [cond-mat.str-el] arXiv
We report a large exchange-bias effect after zero-field cooling the new tetragonal Heusler compound Mn(2)PtGa from the paramagnetic state. The first-principles calculation and the magnetic measurements reveal that Mn(2)PtGa orders ferrimagnetically with some ferromagnetic inclusions. We show that ferrimagnetic ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled exchange bias during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field-induced irreversible magnetic behavior and a spin-glass-like phase. The field-induced irreversibility originates from an unusual first-order ferrimagnetic to antiferromagnetic transition, whereas the spin-glass-like state forms due to the existence of antisite disorder intrinsic to the material.
We report markedly different transport properties of ABA- and ABC-stacked trilayer graphenes. Our experiments in double-gated trilayer devices provide evidence that a perpendicular electric field opens an energy gap in the ABC trilayer, while it causes the increase of a band overlap in the ABA trilayer. In a perpendicular magnetic field, the ABA trilayer develops quantum Hall plateaus at filling factors of \nu = 2, 4, 6... with a step of \Delta \nu = 2, whereas the inversion symmetric ABC trilayer exhibits plateaus at \nu = 6 and 10 with 4-fold spin and valley degeneracy.Comment: 4 pages, 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.