We propose that most of the collisionless shocks in the Universe, for example, supernova remnant shocks, are produced because of the magnetic field generated by Weibel instability and its nonlinear process. In order to verify and validate the computational result confirming this theory, we are carrying out model experiments with intense lasers. We are going to make a collisionless counter-streaming plasma with intense laser ablation based on the scaling law to laser plasma with the particle-in-cell simulation resulting in Weibelmediated shock formation. Preliminary experimental data are shown. The photo-ionization and resultant non-LTE plasma physics are also very important subjects in astrophysics related to mainly compact objects, for example, black hole, neutron star and white dwarf. Planckian radiation with its temperature 80-100 eV has been produced in gold cavity with irradiation of intense lasers inside the cavity. The sample materials are irradiated by the radiation inside the cavity and absorption and self-emission spectra are observed and analyzed
Bright Ar K-shell x-ray with very little background has been generated using an Ar clustering gas jet target irradiated with an 800 mJ, 30 fs ultra-high contrast laser, with the measured flux of 1.1 x 10 4 photons/mrad 2 /pulse. This intense x-ray source critically depends on the laser contrast and the laser energy and the optimization of this source with interaction is addressed. Electron driven by laser electric field directly via nonlinear resonant is proved in simulation, resulting in effective electron heating and the enhancement of x-ray emission. The x-ray pulse duration is demonstrated to be only 10 fs, as well as a source size of 20 µm, posing great potential application for single-shot ultrafast x-ray imaging.
We demonstrate a novel plasma device for magnetic reconnection, driven by Gekko XII lasers irradiating a double-turn Helmholtz capacitor-coil target. Optical probing revealed an accumulated plasma plume near the magnetic reconnection outflow. The background electron density and magnetic field were measured to be approximately 1018 cm−3 and 60 T by using Nomarski interferometry and the Faraday effect, respectively. In contrast with experiments on magnetic reconnection constructed by the Biermann battery effect, which produced high beta values, our beta value was much lower than one, which greatly extends the parameter regime of laser-driven magnetic reconnection and reveals its potential in astrophysical plasma applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.