Improvement in growth and fatness traits are the main objectives in pig all breeding programs. Tenth rib backfat thickness (10RIBBFT) and days to 100 kg (D100), which are good predictors of carcass lean content and growth rate, respectively, are economically important traits and also main breeding target traits in pigs. To investigate the genetic mechanisms of 10RIBBFT and D100 of pigs, we sampled 1,137 and 888 pigs from 2 Yorkshire populations of American and British origin, respectively, and conducted genome-wide association study (GWAS) through combined analysis and meta-analysis, to identify SNPs associated with 10RIBBFT and D100. A total of 11 and 7 significant SNPs were identified by combined analysis for 10RIBBFT and D100, respectively. And in meta-analysis, 8 and 7 significant SNPs were identified for 10RIBBFT and D100, respectively. Among them, 6 and 5 common significant SNPs in two analysis results were, respectively, identified associated with 10RIBBFT and D100, and correspondingly explained 2.09% and 0.52% of the additive genetic variance of 10RIBBFT and D100. Further bioinformatics analysis revealed 10 genes harboring or close to these common significant SNPs, 5 for 10RIBBFT and 5 for D100. In particular, Gene Ontology analysis highlighted 6 genes, PCK1, ANGPTL3, EEF1A2, TNFAIP8L3, PITX2, and PLA2G12, as promising candidate genes relevant with backfat thickness and growth. PCK1, ANGPTL3, EEF1A2, and TNFAIP8L3 could influence backfat thickness through phospholipid transport, regulation of lipid metabolic process through the glycerophospholipid biosynthesis and metabolism pathway, the metabolism of lipids and lipoproteins pathway. PITX2 has a crucial role in skeletal muscle tissue development and animal organ morphogenesis, and PLA2G12A plays a role in the lipid catabolic and phospholipid catabolic processes, which both are involved in the body weight pathway. All these candidate genes could directly or indirectly influence fat production and growth in Yorkshire pigs. Our findings provide novel insights into the genetic basis of growth and fatness traits in pigs. The candidate genes for D100 and 10RIBBFT are worthy of further investigation.
Invasive plants dominate many habitats and cause significant harm to native plants, agriculture and the wider environment. Clipping by mowing machines has been a common method to control invasive plants, but whether it can reduce the performance of invaders and increase the performance of co-occurring natives is not known. This study examined the effects of soil nutrient conditions and clipping on the performance of three invasive and three co-occurring native annual Asteraceae plants under either isolated or competitive conditions. Clipping tended to reduce the aboveground biomass of the invasive plants more than that of the native plants under low, but not under high nutrient conditions. However, invasive plants still produced an aboveground biomass equal to, or larger than, that of native plants under the low nutrient and clipping treatment combination. Nutrient addition increased the aboveground biomass of the invasive plants more than that of the native plants, although this was only marginally significant under competitive conditions. Clipping did not reduce the performance advantage of invaders over natives under high soil nutrient conditions. The ability of invaders to benefit more from nutrient addition, along with its ability to perform equally well, or better than, the native plants after human mechanical control (i.e. clipping), may explain their high abundance and dominance in many habitats.
Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, which significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is been widely and efficiently used in maize and was recently extended to several monocot crops. However, a similar generic and efficient HI system is still lacking in dicot crops. Here we show that genotype-independent in vivo HI can be triggered by mutation of DMP genes in tomato, rapeseed and tobacco with HI rates of ~1.9%, 2.4% and 1.2%, respectively. The DMP-HI system offers a robust DH technology to facilitate variety improvement in these crops. The success of this approach and the conservation of DMP genes paves the way for a generic and efficient genotype-independent HI system in other dicot crops.
Disulfide-mediated 2D protein self-assembly was achieved by single point mutation of hot spots at the C4 interface of ferritin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.