We report the results obtained in 2012-2013 by the Russian Consortium for the Chromosome-centric Human Proteome Project (C-HPP). The main scope of this work was the transcriptome profiling of genes on human chromosome 18 (Chr 18), as well as their encoded proteome, from three types of biomaterials: liver tissue, the hepatocellular carcinoma-derived cell line HepG2, and blood plasma. The transcriptome profiling for liver tissue was independently performed using two RNaseq platforms (SOLiD and Illumina) and also by droplet digital PCR (ddPCR) and quantitative RT-PCR. The proteome profiling of Chr 18 was accomplished by quantitatively measuring protein copy numbers in the three types of biomaterial (the lowest protein concentration measured was 10(-13) M) using selected reaction monitoring (SRM). In total, protein copy numbers were estimated for 228 master proteins, including quantitative data on 164 proteins in plasma, 171 in the HepG2 cell line, and 186 in liver tissue. Most proteins were present in plasma at 10(8) copies/μL, while the median abundance was 10(4) and 10(5) protein copies per cell in HepG2 cells and liver tissue, respectively. In summary, for liver tissue and HepG2 cells a "transcriptoproteome" was produced that reflects the relationship between transcript and protein copy numbers of the genes on Chr 18. The quantitative data acquired by RNaseq, PCR, and SRM were uploaded into the "Update_2013" data set of our knowledgebase (www.kb18.ru) and investigated for linear correlations.
Th1 lymphocytes are considered the main mediators of protection against tuberculosis (TB); however, their phenotypic characteristics and relationship with Th17 and Th1Th17 populations during TB are poorly understood. We have analyzed Th1, Th17, and Th1Th17 lymphocytes in the blood and pulmonary lesions of TB patients. The populations were identified based on the production of IFN-γ and/or IL-17 and the coexpression of CXCR3 (X3) and CCR6 (R6). In the blood, IL-17 and IFN-γIL-17 lymphocytes were barely detectable (median, <0.01% of CD4 lymphocytes), whereas IFN-γ lymphocytes predominated (median, 0.45%). Most IFN-γ lymphocytes (52%) were X3R6, suggesting their "nonclassical" (ex-Th17) nature. In the lungs, IL-17 and IFN-γIL-17 lymphocytes were more frequent (0.3%, < 0.005), yet IFN-γ cells predominated (11%). Phenotypically, lung CD4 cells were X3R6 The degree of differentiation of blood effector CD4 lymphocytes (evaluated based on CD62L/CD27/CD28 coexpression) increased as follows: X3R6 < X3R6 < X3R6, with X3R6 cells being largely terminally differentiated CD62LCD27CD28 cells. Lung CD4 lymphocytes were highly differentiated, recalling blood X3R6 populations. Following in vitro stimulation with anti-CD3/anti-CD28 Abs, X3R6CD4 lymphocytes converted into X3R6 and X3R6 cells. The results demonstrate that, during active TB, Th1 lymphocytes predominate in blood and lungs, document differences in X3/R6 expression by blood and lung CD4 cells, and link the pattern of X3/R6 expression with the degree of cell differentiation. These findings add to the understanding of immune mechanisms operating during TB and are relevant for the development of better strategies to control it.
A gene-centric approach was applied for a large-scale study of expression products of a single chromosome. Transcriptome profiling of liver tissue and HepG2 cell line was independently performed using two RNA-Seq platforms (SOLiD and Illumina) and also by Droplet Digital PCR (ddPCR) and quantitative RT-PCR. Proteome profiling was performed using shotgun LC-MS/MS as well as selected reaction monitoring with stable isotope-labeled standards (SRM/SIS) for liver tissue and HepG2 cells. On the basis of SRM/SIS measurements, protein copy numbers were estimated for the Chromosome 18 (Chr 18) encoded proteins in the selected types of biological material. These values were compared with expression levels of corresponding mRNA. As a result, we obtained information about 158 and 142 transcripts for HepG2 cell line and liver tissue, respectively. SRM/SIS measurements and shotgun LC-MS/MS allowed us to detect 91 Chr 18-encoded proteins in total, while an intersection between the HepG2 cell line and liver tissue proteomes was ∼66%. In total, there were 16 proteins specifically observed in HepG2 cell line, while 15 proteins were found solely in the liver tissue. Comparison between proteome and transcriptome revealed a poor correlation (R ≈ 0.1) between corresponding mRNA and protein expression levels. The SRM and shotgun data sets (obtained during 2015-2016) are available in PASSEL (PASS00697) and ProteomeExchange/PRIDE (PXD004407). All measurements were also uploaded into the in-house Chr 18 Knowledgebase at http://kb18.ru/protein/matrix/416126 .
Amyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA interactions and nuclear localization of iAβ, the interference of iAβ with the normal DNA expression has recently been proposed as a plausible pathway by which Aβ can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aβ42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed β-sheet rich Aβ42 aggregates. Another type of Aβ42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aβ metal-binding domain's histidine residues in Aβ-nucleic acid interactions mediated by zinc, Aβ16 mutants with substitutions H6R and H6A-H13A and rat Aβ16 lacking histidine residue 13 were used. The zinc-induced interaction of Aβ16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aβ42 peptide did not affect DNA binding to Aβ42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAβ-nucleic acid interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.