Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS), which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.
BackgroundSesame (Sesamum indicum L., 2n = 26) is an important oilseed crop with an estimated genome size of 369 Mb. The genetic basis, including the number and locations of quantitative trait loci (QTLs) of sesame grain yield and quality remain poorly understood, due in part to the lack of reliable markers and genetic maps. Here we report on the construction of a hitherto most high-density genetic map of sesame using the restriction-site associated DNA sequencing (RAD-seq) combined with 89 PCR markers, and the identification of grain yield-related QTLs using a recombinant inbred line (RIL) population.ResultIn total, 3,769 single-nucleotide polymorphism (SNP) markers were identified from RAD-seq, and 89 polymorphic PCR markers were identified including 44 expressed sequence tag-simple sequence repeats (EST-SSRs), 10 genomic-SSRs and 35 Insertion-Deletion markers (InDels). The final map included 1,230 markers distributed on 14 linkage groups (LGs) and was 844.46 cM in length with an average of 0.69 cM between adjacent markers. Using this map and RIL population, we detected 13 QTLs on 7 LGs and 17 QTLs on 10 LGs for seven grain yield-related traits by the multiple interval mapping (MIM) and the mixed linear composite interval mapping (MCIM), respectively. Three major QTLs had been identified using MIM with R2 > 10.0% or MCIM with ha2 > 5.0%. Two co-localized QTL groups were identified that partially explained the correlations among five yield-related traits.ConclusionThree thousand eight hundred and four pairs of new DNA markers including SNPs and InDels were developed by RAD-seq, and a so far most high-density genetic map was constructed based on these markers in combination with SSR markers. Several grain yield-related QTLs had been identified using this population and genetic map. We report here the first QTL mapping of yield-related traits with a high-density genetic map using a RIL population in sesame. Results of this study solidified the basis for studying important agricultural traits and implementing marker-assisted selection (MAS) toward genetic improvement in sesame.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0274-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.