We report on molecular beam epitaxial growth of InSb submonolayer insertions in an InAs matrix, exhibiting intense mid-IR photoluminescence (PL) up to room temperature (RT). The InSb insertions are fabricated by an exposure of InAs surface to an antimony Sb4 flux. The nominal thickness of insertions grown at different temperatures (TS=400–485°C) ranges from 0.6 to 1.4 monolayer, as estimated from x-ray diffraction measurements of InSb∕InAs multiple submonolayer structures. This gives rise to the variation of the emission wavelength within the 3.9–4.3 μm range at RT. An integral PL intensity drop from 77 K to RT does not exceed 20 times.
We report on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells subjected to an in-plane external magnetic field and illuminated by microwave or terahertz radiation. The effect is studied in (Cd,Mn)Te/(Cd,Mg)Te quantum-wells (QWs) and (In,Ga)As/InAlAs:Mn QWs belonging to the well-known II-VI and III-V DMS material systems, as well as in heterovalent AlSb/InAs/(Zn,Mn)Te QWs, which represent a promising combination of II-VI and III-V semiconductors. Experimental data and developed theory demonstrate that the photocurrent originates from a spin-dependent scattering of free carriers by static defects or phonons in the Drude absorption of radiation and subsequent relaxation of carriers. We show that in DMS structures, the efficiency of the current generation is drastically enhanced compared to nonmagnetic semiconductors. The enhancement is caused by the exchange interaction of carrier spins with localized spins of magnetic ions resulting, on the one hand, in the giant Zeeman spin splitting, and, on the other hand, in the spin-dependent carrier scattering by localized Mn 2+ ions polarized by an external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.