Microsporidia are obligatory intracellular parasites, most species of which live in the host cell cytosol. They synthesize and then transport secretory proteins from the endoplasmic reticulum to the plasma membrane for formation of the spore wall and the polar tube for cell invasion. However, microsporidia do not have a typical Golgi complex. Here, using quick-freezing cryosubstitution and chemical fixation, we demonstrate that the Golgi analogs of the microsporidia Paranosema (Antonospora) grylli and Paranosema locustae appear as 300-nm networks of thin (25- to 40-nm diameter), branching or varicose tubules that display histochemical features of a Golgi, but that do not have vesicles. Vesicles are not formed even if membrane fusion is inhibited. These tubular networks are connected to the endoplasmic reticulum, the plasma membrane and the forming polar tube, and are positive for Sec13, γCOP and analogs of giantin and GM130. The spore-wall and polar-tube proteins are transported from the endoplasmic reticulum to the target membranes through these tubular networks, within which they undergo concentration and glycosylation. We suggest that the intracellular transport of secreted proteins in microsporidia occurs by a progression mechanism that does not involve the participation of vesicles generated by coat proteins I and II.
The ability of protealysin, a thermolysin-like metallopeptidase from Serratia proteamaculans 94, to cleave actin and matrix metalloprotease MMP2 is reported. In globular actin, protealysin and S. proteamaculans 94 cell extracts are shown to hydrolyze the Gly42-Val43 peptide bond within the DNase-binding loop and the Gly63-Ile64 and Thr66-Ile67 peptide bonds within the nucleotide cleft of the molecule. At enzyme/substrate mass ratio of 1 : 50 and below, a 36 kDa-fragment produced by the cleavage between Gly42 and Val43 was virtually resistant to further breakdown. Judging from the results of zymography, protealysin transforms proMMP2 into a 66 kDa polypeptide characteristic of mature MMP2, indicating that protealysin can activate MMP2. Upon incubation of S. proteamaculans 94 with human larynx carcinoma Hep-2 cells intracellular bacteria were detected in about 10% of Hep-2 cells, this being the first evidence for invasion of eukaryotic cells with bacteria of this species. Thus, S. proteamaculans 94 turned out to be one more bacterial strain in which synthesis of actin-specific metalloprotease is coupled with bacterial invasion. These results are consistent with the idea of the actinase activity of bacterial metalloproteases being a factor that may promote bacterial invasion of eukaryotic cells.
Earlier, we have shown that spontaneously isolated non-pathogenic bacteria Serratia grimesii and Serratia proteamaculans invade eukaryotic cells, provided that they synthesize thermolysin-like metalloproteases ECP32/grimelysin or protealysin characterized by high specificity towards actin. To address the question of whether the proteases are active players in entry of these bacteria into host cells, in this work, human larynx carcinoma Hep-2 cells were infected with recombinant Escherichia coli expressing grimelysin or protealysin. Using confocal and electron microscopy, we have found that the recombinant bacteria, whose extracts limitedly cleaved actin, were internalized within the eukaryotic cells residing both in vacuoles and free in cytoplasm. The E. coli-carrying plasmids without inserts of grimelysin or protealysin gene did not enter Hep-2 cells. Moreover, internalization of non-invasive E. coli was not observed in the presence of protealysin introduced into the culture medium. These results are consistent with the direct participation of ECP32/grimelysin and protealysin in entry of bacteria into the host cells. We assume that ECP32/grimelysin and protealysin mediate invasion being injected into the eukaryotic cell and that the high specificity of the enzyme towards actin may be a factor contributed to the bacteria internalization.
Bacteria of the spontaneously isolated non-pathogenic strain Escherichia coli A2 producing actin-specific protease ECP 32 (Usmanova and Khaitlina, 1989) were shown to be taken up by transformed cells, whereas finite and immortal cell lines were resistant to the infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.