Quantitative LGE by CMR exhibited a substantial prognostic value in SCD events prediction, independent of baseline characteristics. Assessment of LGE can be used as an effective tool for risk stratifying patients with HCM.
Angiotensin-converting enzyme 2 (ACE2) is a member of the renin-angiotension system, however, the correlation between ACE2 and prognosis in UCEC (Uterine Corpus Endometrial Carcinoma) and KIRP (Kidney Renal Papillary Cell Carcinoma) is not clear. We analyzed the expression levels of ACE2 in the Oncomine and TIMER databases, the correlation between ACE2 and overall survival in the PrognoScan, GEPIA and Kaplan-Meier plotter databases. The correlation between ACE2 and immune infiltration level and the type markers of immune cells was investigated in TIMER database. A prognosis analysis based on the expression levels of ACE2 was further performed in related immune cells subgroup. The ACE2 promoter methylation profile was tested in the UALCAN database. In addition, we used GSE30589 and GSE52920 databases to elucidate the changes of ACE2 expression in vivo and in vitro after SARS-CoV infection. ACE2 was elevated in UCEC and KIRP, and high ACE2 had a favorable prognosis. The expression of ACE2 was positively correlated with the level of immune infiltration of macrophage in KIRP, B cell, CD4+T cell, neutrophil and dendritic cell immune infiltration levels in UCEC. ACE2 was significantly positively correlated with the type markers of B cells and neutrophils, macrophages in UCEC, while ACE2 in KIRP was positively correlated with the type markers of macrophages. High ACE2 expression level had a favorable prognosis in different enriched immune cells subgroups in UCEC and KIRP. And the promoter methylation levels of ACE2 in UCEC and KIRP were significantly reduced. What's more, we found that the expression of ACE2 decreased in vivo and in vitro after SARS-CoV infection. In conclusion, ACE2 expression increased significantly in UCEC and KIRP, elevated ACE2 was positively correlated with immune infiltration and prognosis. Moreover, tumor tissues may be more susceptible to SARS-CoV-2 infection in COVID-19 patients with UCEC and KIRP, which may worsen the prognosis.
Background: Heart failure with preserved ejection fraction (HFpEF) is a difficult disease with high morbidity and mortality rates and lacks an effective treatment. Here, we report the therapeutic effect of dapagliflozin, a sodiumglucose cotransporter 2 inhibitor (SGLT2i), on hypertension + hyperlipidemia-induced HFpEF in a pig model. Methods: HFpEF pigs were established by infusing a combination of deoxycorticosterone acetate (DOCA) and angiotensin II (Ang II), and Western diet (WD) feeding for 18 weeks. In the 9th week, half of the HFpEF pigs were randomly assigned to receive additional dapagliflozin treatment (10 mg/day) by oral gavage daily for the next 9 weeks. Blood pressure, lipid levels, echocardiography and cardiac hemodynamics for cardiac structural and functional changes, as well as epinephrine and norepinephrine concentrations in the plasma and tissues were measured. After sacrifice, cardiac fibrosis, the distribution of tyrosine hydroxylase (TH), inflammatory factors (IL-6 and TNF-α) and NO-cGMP-PKG pathway activity in the cardiovascular system were also determined. Results: Blood pressure, total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) were markedly increased in HFpEF pigs, but only blood pressure was significantly decreased after 9 weeks of dapagliflozin treatment. By echocardiographic and hemodynamic assessment, dapagliflozin significantly attenuated heart concentric remodeling in HFpEF pigs, but failed to improve diastolic function and compliance with the left ventricle (LV). In the dapagliflozin treatment group, TH expression and norepinephrine concentration in the aorta were strongly mitigated compared to that in the HFpEF group. Moreover, inflammatory cytokines such as IL-6 and TNF-α in aortic tissue were markedly elevated in HFpEF pigs and inhibited by dapagliflozin. Furthermore, the reduced expression of eNOS and the PKG-1 protein and the cGMP content in the aortas of HFpEF pigs were significantly restored after 9 weeks of dapagliflozin treatment. Conclusion: 9 weeks of dapagliflozin treatment decreases hypertension and reverses LV concentric remodeling in HFpEF pigs partly by restraining sympathetic tone in the aorta, leading to inhibition of the inflammatory response and NO-cGMP-PKG pathway activation.
Myocardial infarction (MI) remains the most common cause of death worldwide. Many MI survivors will suffer from recurrent heart failure (HF), which has been recognized as a determinant of adverse prognosis. Despite the success of improved early survival after MI by primary percutaneous coronary intervention, HF after MI is becoming the major driver of late morbidity, mortality, and healthcare costs. The development of regenerative medicine has brought hope to MI treatment in the past decade. Mesenchymal stem cell (MSC)-derived exosomes have been established as an essential part of stem cell paracrine factors for heart regeneration. However, its regenerative power is hampered by low delivery efficiency to the heart. We designed, fabricated, and tested a minimally invasive exosome spray (EXOS) based on MSC exosomes and biomaterials. In a mouse model of acute myocardial infarction, EXOS improved cardiac function and reduced fibrosis, and promoted endogenous angiomyogenesis in the post-injury heart. We further tested the feasibility and safety of EXOS in a pig model. Our results indicate that EXOS is a promising strategy to deliver therapeutic exosomes for heart repair.
Background:The SYNTAX score for decision makings or outcome predictions in coronary artery disease does not account for the variations in the coronary anatomy, which is a clear fallacy for patients with less typical anatomy than suggested by the SYNTAX score. The current study aimed to derive a new coronary angiographic scoring system accommodating the variability in the coronary anatomy. Methods:The 17-myocardial segment model and laws of competitive blood supply and flow conservation were utilized to derive this new scoring system.Results: We obtained 6 types of RCA dominance, 3 types of diagonal size and 3 types of left anterior descending artery (LAD) length, which together resulted in a total of 54 patterns of coronary artery circulation to account for the variability in the coronary anatomy among individuals. A Coronary Artery Tree description and Lesion EvaluaTion (CatLet) angiographic scoring system has been designed based on the above-mentioned reclassification scheme (htpp://www.catletscore.com, IE browser is required to run this calculator). Conclusions: This new CatLet angiographic scoring system accommodated the variability in the coronary anatomy and standardized the collection of the coronary angiographic data, which could facilitate the comparison and exchange of these data between different catheter labs. Its utility for predicting the clinical outcomes and standardizing the angiographic data collection will be investigated in a series of clinical trials enrolling "all-comers" with coronary artery disease (CAD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.