Rationale: Macrophages play critical roles in the pathogenesis of type 1 diabetes mellitus (T1DM). Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures, implicated in various disease processes. However, their impact on macrophage activation and T1DM pathogenesis remains elusive. Methods: circRNA expression profiles of peripheral blood mononuclear cells (PBMCs) from T1DM children were determined by whole transcriptome microarray. Bioinformatics, quantitative real-time PCR, Western blot, RNA immunoprecipitation (RIP), cell co-culture, cell proliferation, and cell apoptosis assays were performed to investigate the expression, function, and regulatory mechanisms of circPPM1F in vitro . The regulatory role of circPPM1F in vivo was evaluated in the streptozocin-induced diabetic mouse model. Results: We identified 27 upregulated and 31 downregulated differentially expressed circRNAs in T1DM patients. circPPM1F , a circRNA with unknown function, was dominantly expressed in monocytes and significantly upregulated in T1DM patients. Functionally, circPPM1F promoted lipopolysaccharide (LPS)-induced M1 macrophage activation via enhancement of the NF-κB signaling pathway. Mechanistically, circPPM1F competitively interacted with HuR to impair the translation of protein phosphatase, Mg 2+ /Mn 2+ dependent 1F (PPM1F), thus alleviating the inhibitory effect of PPM1F on the NF-κB pathway. Moreover, eukaryotic initiation factor 4A-III (EIF4A3) and fused in sarcoma (FUS) coordinately regulated circPPM1F expression during M1 macrophage activation. In addition, circPPM1F could exacerbate pancreas injury in the streptozocin-induced diabetic mice by activation of M1 macrophages in vivo . Conclusions: circPPM1F is a novel positive regulator of M1 macrophage activation through the circPPM1F -HuR-PPM1F-NF-κB axis. Overexpression of circPPM1F could promote pancreatic islet injury by enhancing M1 macrophage activation and circPPM1F may serve as a novel potential therapeutic target for T1DM in children.
The immune-response gene 1 (IRG1) plays a key role in anti-pathogen defense, as deletion of Irg1 in mice causes severe defects in response to bacterial and viral infection, and decreased survival 1, 2 . IRG1 transcription is rapidly induced by pathogen infection and in ammatory conditions primarily in cells of myeloid lineage 3 . IRG1 encodes a mitochondrial metabolic enzyme, aconitate decarboxylase 1 (ACOD1), that catalyzes the decarboxylation of cis-aconitate to produce the anti-in ammatory metabolite itaconic acid (ITA) 4 . Several molecular processes are affected by ITA, including succinate dehydrogenase (SDH) inhibition 5 , resulting in succinate accumulation and metabolic reprogramming 6,7 , and alkylation of protein cysteine residues, inducing the electrophilic stress response mediated by NRF2 and IκBζ 8, 9 and impairing aerobic glycolysis 10 . However, the mechanisms by which ITA exerts its profound antiin ammatory effect still remains to be fully elucidated. Here, we show that ITA is a potent inhibitor of the TET family DNA dioxygenases, which catalyze the conversion of 5-methylcytosine (5mC) to 5hydroxymethylcytosine (5hmC) during the process of active DNA demethylation. ITA binds to the same site of α-ketoglutarate (α-KG) in TET2, inhibiting its catalytic activity. Lipopolysaccharides (LPS) treatment, which induces Irg1 expression and ITA accumulation, inhibits Tet activity in macrophages. Transcriptome analysis reveals TET2 is a major target of ITA in suppressing LPS-induced genes, including those regulated by NF-κB and STAT signaling pathways. In vivo, ITA decreases 5hmC, reduces LPS-induced acute pulmonary edema and lung and liver injury, and protects mice against lethal endotoxaemia in a manner that is dependent on the catalytic activity of Tet2. Our study thus identi es ITA as an immune modulatory metabolite that selectively inhibits TET enzymes to dampen the in ammatory response. MainDeletion of the Irg1 gene or treatment with cell permeable ITA alters the transcriptional signature in response to LPS 2 . We speculated that ITA may impact epigenetics to in uence gene expression, and therefore, we determined the effect of Irg1 expression and ITA accumulation on global histone and DNA de/methylation in transfected HEK293T cells (Extended Data Fig. 1a). We found that ectopic expression of either wild-type or catalytic inactive mutant Irg1 had little effect on mono-, di-, and trimethylation of all ve histone H3 lysine residues (Extended Data Fig. 1b, 1c). In contrast, expression of wild-type Irg1, but not the catalytic inactive mutant, dramatically reduced Tet2-mediated global 5hmC in cells (Fig. 1a and Extended Data Fig. 1d-e). Like α-KG, which is a crucial co-substrate for the activity of TET2, ITA is also a dicarboxylic acid containing a 4-or 5-carboxylate that, in the case of α-KG, forms hydrogen and ionic bonds with H1416, R1896, and S1898 in TET2 11 . Of note, α-KG binds to Fe(II) in a bidentate manner via its C-1 carboxylate and C-2 keto groups, which are lacking in ITA. This raises the possibi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.