Automated detection of blood vessel structures is becoming of crucial interest for better management of vascular disease. In this paper, we propose a new infinite active contour model that uses hybrid region information of the image to approach this problem. More specifically, an infinite perimeter regularizer, provided by using L(2) Lebesgue measure of the γ -neighborhood of boundaries, allows for better detection of small oscillatory (branching) structures than the traditional models based on the length of a feature's boundaries (i.e., H(1) Hausdorff measure). Moreover, for better general segmentation performance, the proposed model takes the advantage of using different types of region information, such as the combination of intensity information and local phase based enhancement map. The local phase based enhancement map is used for its superiority in preserving vessel edges while the given image intensity information will guarantee a correct feature's segmentation. We evaluate the performance of the proposed model by applying it to three public retinal image datasets (two datasets of color fundus photography and one fluorescein angiography dataset). The proposed model outperforms its competitors when compared with other widely used unsupervised and supervised methods. For example, the sensitivity (0.742), specificity (0.982) and accuracy (0.954) achieved on the DRIVE dataset are very close to those of the second observer's annotations.
The detection of curvilinear structures in medical images, e.g., blood vessels or nerve fibers, is important in aiding management of many diseases. In this work, we propose a general unifying curvilinear structure segmentation network that works on different medical imaging modalities: optical coherence tomography angiography (OCT-A), color fundus image, and corneal confocal microscopy (CCM). Instead of the U-Net based convolutional neural network, we propose a novel network (CS-Net) which includes a self-attention mechanism in the encoder and decoder. Two types of attention modules are utilized-spatial attention and channel attention, to further integrate local features with their global dependencies adaptively. The proposed network has been validated on five datasets: two color fundus datasets, two corneal nerve datasets and one OCT-A dataset. Experimental results show that our method outperforms state-of-the-art methods, for example, sensitivities of corneal nerve fiber segmentation were at least 2% higher than the competitors. As a complementary output, we made manual annotations of two corneal nerve datasets which have been released for public access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.