Flexible smart surfaces with tunable wettability are promising for emerging wearable uses. However, currently, wearable superhydrophobic surfaces with dynamic wetting behaviors are rarely reported. Here, a skin-like superhydrophobic elastomer surface with switchable lotus leaf and rose petal states is reported. Direct laser writing technique is employed for one-step, programmable, large-scale fabrication of monolithic and hierarchical micronanostructures on elastomer, leading to strong water repellence. The surface topography can be finely regulated in a rapid and reversible manner by simple stretching, providing the feasibility of controlling the surface wettability by simple body motions. The ability to switch wetting states enables the surface to capture and release multiple droplets in parallel. Furthermore, the active surface can be applied to the joints of fingers and operate as a droplet manipulator under finger motions without requiring energy supply or external appliance. In this work, dynamic tuning of wetting properties is integrated into the design of skin-like wearable surfaces, revealing great potential in versatile applications such as wearable droplet manipulator, portable actuator, adaptive adhesion control, liquid repellent skin, and smart clothing.
Nanoscale surface texturing, drilling, cutting, and spatial sculpturing, which are essential for applications, including thin-film solar cells, photonic chips, antireflection, wettability, and friction drag reduction, require not only high accuracy in material processing, but also the capability of manufacturing in an atmospheric environment. Widely used focused ion beam (FIB) technology offers nanoscale precision, but is limited by the vacuum-working conditions; therefore, it is not applicable to industrial-scale samples such as ship hulls or biomaterials, e.g., cells and tissues. Here, we report an optical far-field-induced near-field breakdown (O-FIB) approach as an optical version of the conventional FIB technique, which allows direct nanowriting in air. The writing is initiated from nanoholes created by femtosecondlaser-induced multiphoton absorption, and its cutting "knife edge" is sharpened by the far-field-regulated enhancement of the optical near field. A spatial resolution of less than 20 nm (λ/40, with λ being the light wavelength) is readily achieved. O-FIB is empowered by the utilization of simple polarization control of the incident light to steer the nanogroove writing along the designed pattern. The universality of near-field enhancement and localization makes O-FIB applicable to various materials, and enables a large-area printing mode that is superior to conventional FIB processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.