Crop heterogeneity is a possible solution to the vulnerability of monocultured crops to disease. Both theory and observation indicate that genetic heterogeneity provides greater disease suppression when used over large areas, though experimental data are lacking. Here we report a unique cooperation among farmers, researchers and extension personnel in Yunnan Province, China--genetically diversified rice crops were planted in all the rice fields in five townships in 1998 and ten townships in 1999. Control plots of monocultured crops allowed us to calculate the effect of diversity on the severity of rice blast, the major disease of rice. Disease-susceptible rice varieties planted in mixtures with resistant varieties had 89% greater yield and blast was 94% less severe than when they were grown in monoculture. The experiment was so successful that fungicidal sprays were no longer applied by the end of the two-year programme. Our results support the view that intraspecific crop diversification provides an ecological approach to disease control that can be highly effective over a large area and contribute to the sustainability of crop production.
Cancers of the microsatellite mutator phenotype (MMP) show exaggerated genomic instability at simple repeat sequences. More than 50 percent (21 out of 41) of human MMP+ colon adenocarcinomas examined were found to have frameshift mutations in a tract of eight deoxyguanosines [(G)8] within BAX, a gene that promotes apoptosis. These mutations were absent in MMP- tumors and were significantly less frequent in (G)8 repeats from other genes. Frameshift mutations were present in both BAX alleles in some MMP+ colon tumor cell lines and in primary tumors. These results suggest that inactivating BAX mutations are selected for during the progression of colorectal MMP+ tumors and that the wild-type BAX gene plays a suppressor role in a p53-independent pathway for colorectal carcinogenesis.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Its high mortality rate is mainly a result of intra-hepatic metastases. We analyzed the expression profiles of HCC samples without or with intra-hepatic metastases. Using a supervised machine-learning algorithm, we generated for the first time a molecular signature that can classify metastatic HCC patients and identified genes that were relevant to metastasis and patient survival. We found that the gene expression signature of primary HCCs with accompanying metastasis was very similar to that of their corresponding metastases, implying that genes favoring metastasis progression were initiated in the primary tumors. Osteopontin, which was identified as a lead gene in the signature, was over-expressed in metastatic HCC; an osteopontin-specific antibody effectively blocked HCC cell invasion in vitro and inhibited pulmonary metastasis of HCC cells in nude mice. Thus, osteopontin acts as both a diagnostic marker and a potential therapeutic target for metastatic HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.