The nickel oxide nano-flakes materials prepared by a facile approach maintain high power density at high rates of discharge and have excellent cycle life, suggesting their potential application in supercapacitors.
Transition metal oxides possess multiple oxidation states that enable rich redox reactions for pseudo capacitanc. They have been investigated as promising electrode materials to achieve high energy density. In this study, NiO/NiCo(2)O(4)/Co(3)O(4) composite with high specific surface and mesoporous structure is fabricated by a sol-gel process then calcined at 250 °C. Benefits from the improved electron conductivity and effective mesoporous structure, the fabricated composite exhibits high specific capacitance (1717 F g(-1)), enhanced rate capability, and excellent electrochemical stability (94.9% retention after 1000 cycles). Interestingly, the specific capacitance of the composite is higher than that of NiO, NiCo(2)O(4), and Co(3)O(4), which indicates a synergistic effect of the composite on improvement of electrochemical performance. The findings demonstrate the importance and great potential of NiO/NiCo(2)O(4)/Co(3)O(4) composite in development of high-performance energy-storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.