A highly flexible porous ionic membrane (PIM) is fabricated from a polyvinyl alcohol/KOH polymer gel electrolyte, showing well‐defined 3D porous structure. The conductance of the PIM changes more than 70 times as the relative humidity (RH) increases from 10.89% to 81.75% with fast and reversible response at room temperature. In addition, the PIM‐based sensor is insensitive to temperature (0–95 °C) and pressure (0–6.8 kPa) change, which indicates that it can be used as highly selective flexible humidity sensor. A noncontact switch system containing PIM‐based sensor is assembled, and results show that the switch responds favorably to RH change caused by an approaching finger. Moreover, an attachable smart label using PIM‐based sensor is explored to measure the water contents of human skin, which shows a great linear relationship between the sensitivity of the sensor and the facial water contents measured by a commercial reference device.
Freestanding carbon‐based hybrids, specifically carbon nanotube@3D graphene (CNTs@3DG) hybrid, are of great interest in electrochemical energy storage. However, the large holes (about 400 µm) in the commonly used 3D graphene foams (3DGF) constitute as high as 90% of the electrode volume, resulting in a very low loading of electroactive materials that is electrically connected to the carbon, which makes it difficult for flexible supercapacitors to achieve high gravimetric and volumetric energy density. Here, a hierarchically porous carbon hybrid is fabricated by growing 1D CNTs on 3D graphene aerogel (CNTs@3DGA) using a facile one‐step chemical vapor deposition process. In this architecture, the 3DGA with ample interconnected micrometer‐sized pores (about 5 µm) dramatically enhances mass loading of electroactive materials comparing with 3DGF. An optimized all‐solid‐state asymmetric supercapacitor (AASC) based on MnO2@CNTs@3DGA and Ppy@CNTs@3DGA electrodes exhibits high volumetric energy density of 3.85 mW h cm−3 and superior long‐term cycle stability with 84.6% retention after 20 000 cycles, which are among the best reported for AASCs with both electrodes made of pseudocapacitive electroactive materials.
Apoptosis as a novel target for cancer chemotherapy has generated an intense demand for new apoptosis-inducing agents. The newly revealed role of protein families involved in the apoptosis pathway, and resistance to cytotoxic therapies have opened new avenues for the development of novel anticancer strategies. We have established a novel strategy to rapidly obtain protein-targeted, instead of conventional DNA-targeted, apoptosis inducers as antitumor leads. First, a novel organic non-DNA intercalative compound S1 (8-oxo-3-thiomorpholin-4-yl-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile, M(W) = 331) was found with an IC50 of 10(-7)-10(-8) microM against diverse cancer cell lines. Further biological evaluation demonstrated that it was an apoptosis-inducer both in vivo and in vitro. The treatment of hydroperitoneum hepatoma cells (H22 cell line) with S1 at various concentrations (from 0.01 to 10 microM) for 24 h triggered these cells to enter the apoptosis process. The antitumor efficiency was also tested in the H22 xenotransplant models in mice. At a dosage of 0.3 mg kg(-1), S1 exhibited significant antitumor activity with a much longer survival time, a decrease in tumor size, and increased apoptosis cells in tumor tissue. More importantly, studies of the molecular mechanism of apoptosis induction by S1 revealed that S1 inactivated the Bcl-2 protein by binding to it, depolarizing the mitochondrial membrane, and then activating caspase 9, followed by caspase 3. Finally, structure-based virtual modification was performed by computer modeling. As a result, a derivative, S2 (8-oxo-3-[(thienylmethyl)amino]-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile, M(W) = 341) was identified that possessed a lower binding energy to Bcl-2, and demonstrated better antitumor potency, even on the Bcl-2-overexpressing human acute myeloid leukemia (HL-60) cells (IC50 = 1.3 microM) in vitro. S1 and S2 are the well-defined Bcl-2 inhibitors that give us a promising platform for the development of new therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.