Background: Copy number variation (CNV) has become an essential part of genetic structural variation. Coiled-coil domain containing 39 (CCDC39) is a gene that related to the growth and development of organs and tissues. It is identified that it has a CNV region by animal genome resequencing.Objective: In this study, we detected the phenotypic traits and different distributions of CCDC39 gene copy numbers in five Chinese cattle breeds (Qinchuan (QC) cattle, Yunling (YL) cattle, Xianan (XN) cattle, Pinan (PN) cattle and Jiaxian (JX) cattle).Methods: Five hundred and six cattle were randomly selected for CNV distribution detection. Blood samples were taken and genomic DNA was extracted. Different tissues were obtained from adult (n = 3) XN cattle, including heart, liver, kidney, skeletal muscle and lung. The genome qPCR experiment was performed with SYBR Green in triplicate. CDNA qPCR was used to detect the expression level of CCDC39 in different tissues and varieties. Using SPSS v20.0 software, the relationship between CCDC39CNV and the growth traits of PN, XN, QC, NY and YL cattle breeds was analyzed by one-way analysis of variance (ANOVA). Results:The results showed that the expression of CCDC39 in lung was higher than that in other tissues. The expression in liver and kidney was similar, but the expression in heart and muscle was less. It can be seen that the duplication type of QC cattle CCDC39 CNV is higher than the deletion or normal in the height at hip cross. The normal type of PN cattle in body length and hip width was better than duplication and deletion (p < 0.05). In XN cattle, the deletion type of CNV had superior growthThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background: Generally, copy number variation (CNV) is a large-scale structural variation between 50 bp and 1 kb of the genome. It can affect gene expression and is an important reason for genetic diversity and phenotypic trait diversity. Studies have shown that the eukaryotic translation initiation factor 4A2 (EIF4A2) gene plays an essential role in muscle development in both humans and pigs. However, the influence of bovine EIF4A2's copy number change on phenotypic traits has not been reported. Objectives:To detect the tissue expression profile of the EIF4A2 gene in adult cattle and individuals' CNV type of variation. Then, we explored the correlation between EIF4A2-CNV and growth traits in Chinese cattle breeds. Methods: Real-time fluorescent quantitative reverse transcription PCR (qRT-qPCR) was used to determine the expression profile of the EIF4A2 gene. Real-time fluorescent quantitative PCR (qPCR) was used to detect the CNV type of bovine populations. Then, SPSS 26.0 was used for association analysis. Results: In this study, a total of 513 individuals in four cattle breeds (Qinchuan cattle [QC], Yunling cattle [YL], Pinan cattle [PN] and Jiaxian cattle [JX]) were detected for EIF4A2 gene's CNV. The results showed that EIF4A2-CNV has an essential impact on hip width (HW) and rump length (RL) in QC, heart girth (HG), chest depth (CD) and RL in YL and HW in PN. However, it had no significant effect on JX. Conclusions:The above results suggest that EIF4A2 gene's CNV can be used as a molecular marker for cattle breeding, which is helpful to accelerate the breeding of superior beef cattle breeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.