Purpose: Tumor-derived exosomes are proposed as a new type of cancer vaccine. Heat shock proteins are potentTh1adjuvant, and heat stress can induce heat shock protein and MHC-I expression in tumor cells, leading to the increased immunogenicity of tumor cells. To improve the immunogenicity of exosomes as cancer vaccine, we prepared exosomes from heat-stressed carcinoembryonic antigen (CEA)^positive tumor cells (CEA +
Objective. To study the osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) from patients with ankylosing spondylitis (AS) and to investigate the mechanisms of abnormal osteogenic differentiation of BM-MSCs in AS.Methods. BM-MSCs from healthy donors (HDMSCs) and patients with AS (AS-MSCs) were cultured in osteogenic differentiation medium for 0-21 days, after which their osteogenic differentiation capacity was determined using alizarin red S and alkaline phosphatase assays. Gene expression levels of osteoblastic markers and related cytokines were detected by high-throughput quantitative reverse transcription-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to detect protein levels of bone morphogenetic protein 2 (BMP-2) and Noggin in the cell culture supernatant. The activation of Smad1/5/8 and MAPK signaling pathways was measured by Western blotting. The balance between BMP-2 and Noggin expression was regulated using lentiviruses encoding short hairpin RNA and exogenous Noggin, respectively, which enabled evaluation of how this balance affected osteogenic differentiation of AS-MSCs.Results. AS-MSCs outperformed HD-MSCs in osteogenic differentiation capacity. During osteogenic differentiation, AS-MSCs secreted more BMP-2 but less Noggin, accompanied by an overactivation of Smad1/5/ 8 and ERK-1/2. When the Noggin concentration was increased or BMP-2 expression was inhibited, the abnormal osteogenic differentiation of AS-MSCs was rectified. In addition, the balance between BMP-2 and Noggin secretion was restored.Conclusion. The results of this study demonstrate that an imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of AS-MSCs. These findings reveal a mechanism of pathologic osteogenesis in AS and provide a new perspective on inhibiting pathologic osteogenesis by regulating the balance between BMP-2 and Noggin.
Background Rehabilitation is crucial for postoperative patients with low back pain (LBP). However, the implementation of traditional clinic-based programs is limited in developing countries, such as China, because of the maldistribution of medical resources. Mobile phone–based programs may be a potential substitute for those who have no access to traditional rehabilitation. Objective The aim of this study was to examine the efficacy of mobile phone–based rehabilitation systems in patients who underwent lumbar spinal surgery. Methods Patients who accepted spinal surgeries were recruited and randomized into 2 groups of rehabilitation treatments: (1) a mobile phone–based eHealth (electronic health) program (EH) or (2) usual care treatment (UC). The primary outcomes were (1) function and pain status assessed by the Oswestry Disability Index (ODI) and (2) the visual analog scale (VAS). Secondary outcomes were (1) general mental health and (2) quality of life (Likert scales, EuroQol-5 Dimension health questionnaire, and 36-item Short-Form Health Survey). All the patients were assessed preoperatively and then at 3, 6, 12, and 24 months postoperatively. Results A total of 168 of the 863 eligible patients were included and randomized in this study. Our analysis showed that the improvement of primary outcomes in the EH group was superior to the UC group at 24 months postoperatively (ODI mean 7.02, SD 3.10, P <.05; VAS mean 7.59, SD 3.42, P <.05). No significant difference of primary outcomes was found at other time points. A subgroup analysis showed that the improvements of the primary outcomes were more significant in those who completed 6 or more training sessions each week throughout the trial (the highest compliance group) compared with the UC group at 6 months (ODI mean 17.94, SD 5.24, P <.05; VAS mean 19.56, SD 5.27, P <.05), 12 months (ODI mean 13.39, SD 5.32, P <.05; VAS mean 14.35, SD 5.23, P <.05), and 24 months (ODI mean 18.80, SD 5.22, P <.05; VAS mean 21.56, SD 5.28, P <.05). Conclusions This research demonstrated that a mobile phone–based telerehabilitation system is effective in self-managed rehabilitation for postoperative patients with LBP. The effectiveness of eHealth was more evident in participants with higher compliance. Future research should focus on improving patients’ compliance. Trial Registration Chinese Clinical Trial Registry ChiCTR-TRC-13003314; http://www.chictr.org.cn/showproj.aspx?proj=6245 (Archived by WebCite at http://www.webcitation.org/766RAIDNc)
The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and CD86 expression and enhancement of IL-1b, TNF-a, MIP-1a, MIP-1b, RANTES and IP-10 production. Vaccines composed of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-c-producing Th1 response both in vitro and in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently induce an IFN-c-producing Th1 response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs released from chemically stressed cancer cells can activate DCs via TLR4 and enhance the induction of an anti-tumor T-cell immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.