BackgroundGenome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows.ResultsGenome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26.ConclusionsGenome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.
Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.
A genome scan was conducted in the North American Holstein-Friesian population for quantitative trait loci (QTL) affecting production and health traits using the granddaughter design. Resource families consisted of 1,068 sons of eight elite sires. Genome coverage was estimated to be 2,551 cM (85%) for 174 genotyped markers. Each marker was tested for effects on milk yield, fat yield, protein yield, fat percentage, protein percentage, somatic cell score, and productive herd life using analysis of variance. Joint analysis of all families identified marker effects on 11 chromosomes that exceeded the genomewide, suggestive, or nominal significance threshold for QTL effects. Large marker effects on fat percentage were found on chromosomes 3 and 14, and multimarker regression analysis was used to refine the position of these QTL. Half-sibling families from Israeli Holstein dairy herds were used in a daughter design to confirm the presence of the QTL for fat percentage on chromosome 14. The QTL identified in this study may be useful for marker-assisted selection and for selection of a refined set of candidate genes affecting these traits.
The intensive selection programs for milk made possible by mass artificial insemination increased the similarity among the genomes of North American (NA) Holsteins tremendously since the 1960s. This migration of elite alleles has caused certain regions of the genome to have runs of homozygosity (ROH) occasionally spanning millions of continuous base pairs at a specific locus. In this study, genome signatures of artificial selection in NA Holsteins born between 1953 and 2008 were identified by comparing changes in ROH between three distinct groups under different selective pressure for milk production. The ROH regions were also used to estimate the inbreeding coefficients. The comparisons of genomic autozygosity between groups selected or unselected since 1964 for milk production revealed significant differences with respect to overall ROH frequency and distribution. These results indicate selection has increased overall autozygosity across the genome, whereas the autozygosity in an unselected line has not changed significantly across most of the chromosomes. In addition, ROH distribution was more variable across the genomes of selected animals in comparison to a more even ROH distribution for unselected animals. Further analysis of genome-wide autozygosity changes and the association between traits and haplotypes identified more than 40 genomic regions under selection on several chromosomes (Chr) including Chr 2, 7, 16 and 20. Many of these selection signatures corresponded to quantitative trait loci for milk, fat, and protein yield previously found in contemporary Holsteins.
We report putative quantitative trait loci affecting female fertility and milk production traits using the merged data from two research groups that conducted independent genome scans in Dairy Bull DNA Repository grandsire families to identify quantitative trait loci (QTL) affecting economically important traits. Six families used by both groups had been genotyped for 367 microsatellite markers covering 2713.5 cM of the cattle genome (90%), with an average spacing of 7.4 cM. Phenotypic traits included PTA for pregnancy rate and daughter deviations for milk, protein and fat yields, protein and fat percentages, somatic cell score, and productive life. Analysis of the merged dataset identified putative quantitative trait loci that were not detected in the separate studies, and the pregnancy rate PTA estimates that recently became available allowed detection of pregnancy rate QTL for the first time. Sixty-one putative significant marker effects were identified within families, and 13 were identified across families. Highly significant effects were found on chromosome 3 affecting fat percentage and protein yield, on chromosome 6 affecting protein and fat percentages, on chromosome 14 affecting fat percentage, on chromosome 18 affecting pregnancy rate, and on chromosome 20 affecting protein percentage. Within-family analysis detected putative QTL associated with pregnancy rate on six chromosomes, with the effect on chromosome 18 being the most significant statistically. These findings may help identify the most useful markers available for QTL detection and, eventually, for marker-assisted selection for improvement of these economically important traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.