Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases.
PURPOSE. Mutations in the BEST1 gene can cause Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB). The aim of the current study was to establish the BEST1 mutation spectrum in Chinese patients with BVMD and ARB and to describe the phenotypic characteristics of patients carrying BEST1 mutations.
METHODS.A total of 37 probands with a clinical diagnosis of BVMD (17 patients) or ARB (20 patients) were recruited for genetic analysis; of these, only 5 probands had a family history. All probands underwent detailed ophthalmic examinations. All coding exons and exon-intron boundaries of the BEST1 gene were screened by PCR-based DNA sequencing. In silico programs were used to analyze the pathogenicity of all the variants. Genomic DNA rearrangements of the BEST1 gene were identified by real-time quantitative PCR (RQ-PCR).RESULTS. For patients with BVMD, single heterozygous BEST1 mutations were identified in 13 patients and compound heterozygous mutations were found in 3 patients. For patients with ARB, biallelic mutations were found in 13 probands and single mutant alleles in six patients. Overall, 36 disease-causing variants (20 novel mutations) of the BEST1 gene were identified, including 28 (77.8%) missense, 3 (8.3%) nonsense, 4 (11.1%) splicing effect, and 1 (2.8%) frameshift small duplication mutations.CONCLUSIONS. The mutation spectrum of the BEST1 gene in Chinese patients differed from those of Caucasian patients. Mutations that cause ARB differ from those that cause BVMD. BEST1 screening is important for precise diagnosis of BVMD or ARB.
Beneficial mutations in diversifying glucose-limited Escherichia coli populations are mostly unidentified. The genome of an evolved isolate with multiple differences from that of the ancestor was fully assembled. Remarkably, a single mutation in hfq was responsible for the multiple benefits under glucose limitation through changes in at least five regulation targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.