Nitrous acid (HONO) is a major precursor of tropospheric hydroxyl radical (OH) that accelerates the formation of secondary pollutants. The HONO sources, however, are not well understood, especially in polluted areas. Based on a comprehensive winter field campaign conducted at a rural site of the North China Plain, a box model (MCM v3.3.1) was used to simulate the daytime HONO budget and nitrate formation. We found that HONO photolysis acted as the dominant source for primary OH with a contribution of more than 92%. The observed daytime HONO could be well explained by the known sources in the model. The heterogeneous conversion of NO2 on ground surfaces and the homogeneous reaction of NO with OH were the dominant HONO sources with contributions of more than 36% and 34% to daytime HONO, respectively. The contribution from the photolysis of particle nitrate and the reactions of NO2 on aerosol surfaces were found to be negligible in clean periods (2%) and slightly higher during polluted periods (8%). The relatively high OH levels due to fast HONO photolysis at the rural site remarkably accelerated gas-phase reactions, resulting in the fast formation of nitrate as well as other secondary pollutants in the daytime.
Summertime HONO concentrations were synchronously measured at two (an agricultural and a non-agricultural) sites in the North China Plain (NCP). Daytime HONO (1.4±0.6 ppbv) and HONO/NO2 ((12±8)%) over the agricultural field after fertilization were found to be remarkably higher than those before fertilization, implying strong HONO emission from the fertilized fields.Synchronous enhancements of HONO and O3 after fertilization at both sites suggested that the emitted HONO accelerated the local and the regional O3 pollution. HONO budget analysis further revealed that its emission was significantly enhanced after fertilization. Soil HONO emission flux and its uncertainty were estimated and discussed. The estimated emission flux exhibited a distinct diurnal variation with a noontime maximum. Net OH production rate from HONO photolysis greatly exceeded that from O3 photolysis over the agricultural field, and their maximum ratio of 4.7 was obtained after fertilization. We provide field evidence that fertilized fields in the NCP act as a strong HONO source, which accelerates daytime photochemistry, leading to an increase of regional photo-oxidants such as O3. Considering the severe O3 pollution in the summer NCP and that the large area of the agricultural field is regularly treated with high fertilization amount in this region, HONO emission should be taken into account in the regional air quality deterioration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.