Abscisic acid (ABA) glucose conjugation mediated by uridine diphosphate glucosyltransferases (UGTs) is an important pathway in regulating ABA homeostasis. In the present study, we investigated three tomato SlUGTs that are highly expressed in fruit during ripening, and these SlUGTs were localized to the cytoplasm and cell nucleus. Among these three UGTs, SlUGT75C1 catalyzes the glucosylation of both ABA and IAA in vitro; SlUGT76E1 can only catalyze the conjugation of ABA; and SlUGT73C4 cannot glycosylate either ABA or IAA. Therefore, SlUGT75C1 was selected for further investigation. SlUGT75C1 RNA interference significantly up-regulated the expression level of SlCYP707A2, which encodes an ABA 8'-hydroxylase but did not affect the expression of SlNCED1, which encodes a key enzyme in ABA biosynthesis. Suppression of SlUGT75C1 significantly accelerated fruit ripening by enhancing ABA levels and promoting the early release of ethylene. SlUGT75C1-RNAi altered the expression of fruit ripening genes (genes involved in ethylene release and cell wall catabolism). SlUGT75C1-RNAi seeds showed delayed germination and root growth compared with wild-type as well as increased sensitivity to exogenous ABA. SlUGT75C1-RNAi plants were also more resistant to drought stress. These results demonstrated that SlUGT75C1 plays a crucial role in ABA-mediated fruit ripening, seed germination, and drought responses in tomato.
Abscisic acid (ABA) regulates plant growth and development, but the role of ABA in the development of reproductive organs in tomato has rarely been addressed. In the present study, the role of ABA in the regulation of male and female gametogenesis as well as pollen development and germination is tested in tomato. qRT-PCR and in situ hybridization analysis of 9-cis-epoxycarotenoid dioxygenase (SlNCED1), a key enzyme in the ABA biosynthetic pathway, showed high expression of SlNCED1 primarily in the meristem during gametogenesis and mainly in ovule, stigma, anther/pollen and vascular tissues during floral organ development. SlNCED1 expression and ABA accumulation in anther peak at stages 13-14, suggesting that ABA plays a role in the primary formation of pollen grains. Over expression and suppression of SlNCED1 led to the abnormal development of anther/pollen, especially in SlNCED1-OE lines, which have serious pollen deterioration. The percentage of pollen germination in wild type is 91.47%, whereas it is 6.85% in OE transgenic lines and 38.4% at anthesis in RNAi lines. RNA-Seq of anthers shows that SlNCED1-OE can significantly enhance the expression of SlPP2Cs and down-regulate the expression of SlMYB108 and SlMYB21, which are anther/flower-specific transcriptional factors in tomato. Finally, anther transcriptome data indicate that SlNCED1 is involved in ABA-mediated regulation in pollen/anther metabolism, cell wall modification, and transcription levels. These results support an important role for ABA in the development of reproductive organs in tomato and contribute to the elucidation of the underlying regulatory mechanisms.
Although ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA. The SlPP2C1 gene was expressed in all tomato tissues throughout development, particularly in flowers and fruits, and it was up-regulated by dehydration and ABA treatment. SlPP2C1 expression in fruits was increased at 30 d after full bloom and peaked at the B + 1 stage. Suppression of SlPP2C1 expression significantly accelerated fruit ripening which was associated with higher levels of ABA signaling genes that are reported to alter the expression of fruit ripening genes involved in ethylene release and cell wall catabolism. SlPP2C1-RNAi (RNA interference) led to increased endogenous ABA accumulation and advanced release of ethylene in transgenic fruits compared with wild-type (WT) fruits. SlPP2C1-RNAi also resulted in abnormal flowers and obstructed the normal abscission of pedicels. SlPP2C1-RNAi plants were hypersensitized to ABA, and displayed delayed seed germination and primary root growth, and increased resistance to drought stress compared with WT plants. These results demonstrated that SlPP2C1 is a functional component in the ABA signaling pathway which participates in fruit ripening, ABA responses and drought tolerance.
Although the role of the ethylene response factor (ERF) Pti4 in disease resistance has been demonstrated in higher plants, it is presently unknown whether the tomato SlPti4 protein plays a role in the regulation of fruit development and the stress response. Here, we show that SlPti4 is involved in the regulation of fruit ripening, seed germination, and responses to drought and Botrytis cinerea infection through adjustments to ABA metabolism and signaling. SlPti4 gene expression is very low early in fruit development, but increases rapidly during ripening and can be induced by exogenous ABA and 1-aminocyclopropane 1-carboxylate (ACC). RNA interference (RNAi)-induced silencing of SlPti4 leads to an increase of ABA accumulation together with a decrease of ethylene release, which causes the high expression level of SlBcyc, and thus the transgenic fruit is orange instead of red as in wild-type fruit during ripening. SlPti4-RNAi seeds accumulate less ABA and mRNA for ABA receptor SlPYL genes, which causes insensitivity to ABA treatment. SlPti4-RNAi transgenic plants with low ABA levels and high ethylene release were more sensitive to drought stress. SlPti4-RNAi plants also showed weaker resistance to B. cinerea infection than the wild type. Thus, SlPti4 is an important regulator of tomato fruit ripening, seed germination and abiotic/biotic stress responses. This study expands our knowledge on diverse plant physiologies which are regulated by ABA signaling and the function of SlPti4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.